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de Mécanique Avancée, Laboratoire Mécanique et Ingénieries (IFMA/LaMI)) in Clermont-Ferrand has

allowed me to develop much of the research work gathered in this report. Both his strong implication in

this partnership and his constant encouragements to prepare this thesis are gratefully acknowledged.

As a consequence, part of the results presented in the sequel have been obtained during the Ph.D thesis

of students who were co-supervised by Pr. Lemaire. The successive Ph.D students who participated into

these research projects are acknowledged for their contributions, namely Céline Andrieu-Renaud, Zakoua
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Résumé

La mécanique probabiliste, à l’interface entre la modélisation des structures, la statistique et les proba-

bilités permet de prendre en compte les incertitudes des paramètres des modèles mécaniques et d’étudier

leur impact sur les prédictions. Au sens large, elle regroupe des domaines aussi variés que la dynamique

stochastique, la fiabilité des structures, les éléments finis stochastiques, etc. Ce mémoire d’habilitation à

diriger des recherches présente une approche méthodologique globale du traitement des incertitudes dans

laquelle s’inscrivent différents développements originaux.

Le schéma général de traitement des incertitudes en mécanique proposé s’articule en trois étapes prin-

cipales, rappelées dans le chapitre introductif : la définition du modèle mathématique décrivant le

comportement physique du système considéré, la caractérisation probabiliste des incertitudes sur les

paramètres de ce modèle, enfin la propagation de ces incertitudes à travers le modèle. Selon l’information

recherchée (analyse des moments statistiques de la réponse, analyse de distribution, analyse de fiabilité,

hiérarchisation des paramètres par leur importance), différentes méthodes de calcul peuvent être em-

ployées.

De façon à faciliter la lecture du mémoire, on rappelle tout d’abord les notions élémentaires de proba-

bilités et statistique dans le chapitre 2. On présente les méthodes classiques de construction du modèle

probabiliste des paramètres à partir de données disponibles : jugement d’expert, principe de maximum

d’entropie, inférence statistique, approches bayésiennes. La modélisation de la variabilité spatiale des

données par champs aléatoires est également abordée.

Un rapide état de l’art sur les méthodes de propagation des incertitudes est donné dans le chapitre 3.

Pour le calcul des premiers moments statistiques de la réponse du modèle, on présente les méthodes

de simulation de Monte Carlo, de perturbation et de quadrature. Les méthodes classiques de fiabilité

(simulation de Monte Carlo, FORM/SORM, simulation d’importance, etc.) sont ensuite abordées. On

introduit finalement différents outils permettant de hiérarchiser les paramètres d’entrée du modèle en

fonction de leur importance (analyse de sensibilité) : facteurs d’importances, indices de Sobol’.

Les approches spectrales développées depuis une quinzaine d’années sous le nom d’éléments finis stochas-

tiques sont abordées au chapitre 4. Elles sont fondées sur la représentation de la réponse aléatoire du

modèle sur la base dite du chaos polynomial. On introduit dans un premier temps l’approche intrusive,

bien adaptée à la résolution de problèmes stochastiques elliptiques. On présente ensuite de façon ex-

haustive les approches dites non intrusives, qui permettent d’obtenir les coefficients de la décomposition

en chaos polynomial par une série d’évaluations de la réponse déterministe du modèle, pour des jeux

de paramètres d’entrée judicieusement choisis. Les contributions de l’auteur au développement des

méthodes de projection et régression sont soulignées. On montre également comment post-traiter de

façon élémentaire les coefficients du chaos pour obtenir les moments statistiques ou la distribution de la

réponse, résoudre un problème de fiabilité ou encore hiérarchiser les paramètres d’entrée. Une comparai-

son complète des différentes approches autour d’un problème linéaire de mécanique des structures permet

de mesurer leurs performances respectives.

La propagation des incertitudes à travers un modèle mathématique s’appuie sur la caractérisation proba-
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biliste de ses paramètres d’entrée. Celle-ci est parfois délicate à établir, alors que la qualité des prédictions

probabilistes en dépend de façon importante. Dans le chapitre 5, on s’intéresse à des problèmes dans

lesquels des informations relatives à la réponse du système peuvent être utilisées pour améliorer l’analyse.

Lorsqu’on considère un système réel particulier, pour lequel on dispose de données d’auscultation, on peut

utiliser les méthodes d’actualisation bayésienne des prédictions : on propose ici l’utilisation de la simula-

tion de Monte Carlo par châınes de Markov (méthode MCMC) et une méthode inspirée de la fiabilité des

structures baptisée FORM inverse bayésien. Lorsqu’on s’intéresse à l’incertitude aléatoire de paramètres

d’entrée du modèle non directement mesurables (telle qu’elle apparâıt au travers de la dispersion observée

dans la réponse de système identiques), on doit résoudre un problème inverse probabiliste. On propose

alors de représenter ces paramètres de loi de probabilité inconnue à l’aide du chaos polynomial, dans un

contexte d’inférence semi-paramétrique.

Le chapitre 6 aborde des développements spécifiques en fiabilité des structures lorsque le problème dépend

du temps (e.g. chargement modélisé par des processus stochastiques, dégradation des propriétés des

matériaux dans le temps, etc.). On introduit la notion de taux de franchissement pour le calcul de

la probabilité de défaillance cumulée. Des bornes sur cette probabilité peuvent être calculées d’une

part par une approche asymptotique, d’autre part par la méthode PHI2, dont l’auteur a contribué au

développement. Les problèmes de fiabilité dépendant de l’espace sont finalement introduits, et notamment

la notion d’étendue de la défaillance, qui définit la taille du sous-système mécanique pour lequel un critère

de défaillance est ponctuellement atteint. Un exemple associé à la durabilité des poutres en béton armé

soumises à la carbonation et à la corrosion des armatures illustre le propos.

Les développements originaux présentés dans ce mémoire sont en grande partie issus de problèmes concrets

intéressant eDF. Le chapitre 7 permet de resituer ces travaux dans leur contexte applicatif : construction

d’un référentiel probabiliste pour l’analyse des structures de tuyauterie de centrale nucléaire sollicitées en

fatigue thermique, durabilité des coques d’aéro-réfrigérants, mécanique de la rupture non linéaire pour

l’étude de la fissuration des tuyauteries.



Abstract

Probabilistic engineering mechanics aims at taking into account uncertainties on input parameters of

mechanical models and studying their impact onto the model response. This field lies at the interface

between mechanics, statistics and probability theory and encompasses various applications such as struc-

tural reliability, stochastic finite element analysis and random vibrations. This thesis introduces a global

framework for dealing with uncertainties in mechanics and presents original results in this context.

The proposed global scheme for dealing with uncertainties relies upon three steps, namely the definition

of the mathematical model of the physical system, the probabilistic characterization of the uncertainty on

the input parameters and the propagation of the uncertainty through the model. Various computational

schemes may be applied in practice according to the type of analysis of interest, namely statistical

moment-, distribution, reliability and sensitivity analysis.

In order to make the reading easier, elementary notions of probability theory and statistics are recalled in

Chapter 2. Methods for building the probabilistic model of the input parameters from the available data

are reviewed, including expert judgment, principle of maximum entropy, classical and Bayesian inference.

The modelling of spatially variable data using random fields is also adressed.

A short state-of-the-art on classical uncertainty propagation methods is given in Chapter 3. Second

moment methods such as Monte Carlo simulation, perturbation and quadrature methods are reviewed,

as well as structural reliability methods such as FORM/SORM and importance sampling. Various mea-

sures of sensitivity such as importance factors and Sobol’ indices used for ranking the input parameters

according to their importance are finally introduced.

Stochastic spectral methods are addressed in Chapter 4. They are based on the representation of the

random model response in terms of polynomial chaos expansions (PCE). The principle of the so-called

Galerkin intrusive solution scheme, which is well adapted to solve elliptic stochastic problems is first

introduced. Then the non intrusive projection and regression schemes are detailed, which allow the

analyst to compute the coefficients of the response PCE using a series of deterministic calculations based

on a selected set of input parameters. The post-processing of the PCE coefficients in order to compute

the response distribution and the statistical moments or to solve reliability and sensitivity problems is

shown. An illustrative example dealing with a linear truss structure allows one to compare the relative

efficiency of the various approaches.

The uncertainty propagation methods rely upon a probabilistic model of the input parameters, which

may be difficult to build up in practice. In Chapter 5, problems in which information related to the

system response is available are considered. When dealing with some particular real system, for which

monitoring data is available, one may resort to Bayesian updating techniques in order to improve the

model predictions: Markov chain Monte Carlo simulation (MCMC) is proposed in this context together

with a Bayesian inverse FORM approach inspired by structural reliability methods. When the aleatoric

uncertainty of some non measurable input parameters is of interest (whose uncertainty is caught through

the very scattering of the measured model response), a stochastic inverse problem shall be solved. A

method based on the polynomial chaos expansion of the input parameters is proposed in this context.
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Chapter 6 adresses so-called time-variant reliability problems, in which time may appear in the modelling

of loads (e.g. using random processes) or degrading materials. The outcrossing approach is introduced in

order to compute bounds to the cumulative probability of failure by either an asymptotic approach or the

so-called PHI2 method, which was partly developed by the author. Space-variant reliability problems are

finally considered. The extent of damage, which is the volume of the subsystem in which some pointwise

failure criterion is attained, is defined and studied. The durability of a RC beam submitted to concrete

carbonation and rebars corrosion is finally addressed for the sake of illustration.

Most of the results gathered in this thesis have been obtained starting from real industrial problems

that were of interest to eDF. Thus Chapter 7 presents three direct applications of this research, namely

a probabilistic framework for thermal fatigue design of pipes in nuclear power plants, a study of the

durability of ccoling towers and the non linear fracture mechanics of cracked pipes.



Contents

1 Introduction 1

1 A brief history of modelling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2 Uncertainty propagation and sensitivity analysis . . . . . . . . . . . . . . . . . . . . . . . 1

2.1 General framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2.2 Models of physical systems (Step A) . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.3 Quantification of sources of uncertainty (Step B) . . . . . . . . . . . . . . . . . . . 4

2.4 Uncertainty propagation (Step C) . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.5 Sensitivity analysis (Step C’) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

3 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

4 Reader’s guide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 Probabilistic model building 9

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2 Basics of probability theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.1 Probability space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.1.1 Algebra of events and probability measure . . . . . . . . . . . . . . . . . 9

2.1.2 Frequentist interpretation of probabilities . . . . . . . . . . . . . . . . . . 10

2.1.3 Conditional probability, Bayes’ theorem and rule of total probability . . . 11

2.2 Random variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2.1 Definition and basic properties . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2.2 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.3 Random vectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3 Quantification of sources of uncertainty . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.2 Expert judgment and literature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

xi



xii Contents

3.3 Principle of maximum entropy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.4 Statistics-based model building . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.4.2 Method of moments and maximum likelihood estimation . . . . . . . . . 16

3.5 Bayesian inference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.6 Stochastic inverse methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

4 Modelling spatial variability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

4.2 Basics of random fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

4.2.1 Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

4.2.2 Gaussian random fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

4.2.3 Principle of random field discretization . . . . . . . . . . . . . . . . . . . 19

4.3 Series expansion methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
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Chapter 1

Introduction

1 A brief history of modelling

The birth of modern science is usually attributed to Descartes, Galileo and Newton who introduced

the rigorous formalism of mathematics into physics. According to this vision, a model of a physical

phenomenon may be defined as an idealized abstract representation of this phenomenon by a set of

equations, whose solution reproduces the experimental observations.

Originally, models helped scientists decipher the laws of physics, e.g. gravitation, optics, electromag-

netism, etc. During the 20th century, the original sense has evolved and modelling is nowadays the

inescapable tool of engineers for the design, manufacturing, operating and monitoring of industrial sys-

tems or civil structures.

From this viewpoint, a major revolution has happened in the last four decades with the emergence of

computer simulation. Basically the algorithms developed in the art of computing allow the analysts to

solve the equations arising from their models of ever increasing complexity. Computing has become an

everyday tool both in the academia and in the industry, where it is of irreplaceable use in the design of

manufactured products (e.g. airplanes, cars, bridges, offshore structures, nuclear power plants, etc.) or

in prospective predictions (e.g. meteorology, climat change, air pollution, etc.)

However, despite the increase in the accuracy of the representations and in the power of computers, models

will never be able to catch comprehensively the complexity of the real world. Indeed, they always rely

upon simplifying assumptions that are usually validated a posteriori by experimental evidence. Moreover,

models should be fed by values of their input parameters, whose estimation may be difficult or inaccurate,

i.e. uncertain. Dealing with these uncertainties is the main goal of this thesis.

2 Uncertainty propagation and sensitivity analysis

2.1 General framework

Probabilistic engineering aims at taking into account the uncertainties appearing in the modelling of

physical systems and studying the impact of those uncertainties onto the system response. As a science,

it emerged in civil and mechanical engineering in the 70’s although pioneering contributions date back to

the first half of the twentieth century (Mayer, 1926; Freudenthal, 1947; Lévi, 1949). This field lies at the
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intersection of branches of physics on the one hand (e.g. civil, environmental and mechanical engineering)

and applied mathematics on the other hand (e.g. statistics, probability theory and computer simulation).

In this thesis, methods for introducing uncertainty analysis in models of physical systems are considered.

Although the models that will be investigated mostly resort to mechanics, these methods have a larger

scope, i.e. they may be applied (and for some of them, have been already applied) to chemical engineering,

electromagnetism, neutronics, etc.

The main steps for such kind of analysis are summarized in Figure 1.1. This sketch results from a

multidisciplanary project carried out at eDF, R&D Division since 2003, in which the author took part

(see a review in de Rocquigny (2006a,b)).

Figure 1.1: General sketch for uncertainty analysis

In the above figure, three steps are identified:

• Step A consists in defining the model or sequence of models and associated criteria (e.g. failure

criteria) that should be used to assess the physical system under consideration. In case of complex

systems and/or multiphysics approaches, it requires the clear identification of the input and output

of each submodel. This step gathers all the ingredients used for a classical deterministic analysis of

the physical system to be analyzed.

• Step B consists in quantifying the sources of uncertainty, i.e. identifying those input parameters

that are not well known and modelling them in a probabilistic context. The end product of this step

is a random vector of input parameters. In some cases, the description of the time (resp. spatial)

variability of parameters requires the introduction of random processes (resp. random fields).

• Step C consists in propagating the uncertainty in the input through the model, i.e. characterizing the

random response appropriately with respect to the assessment criteria defined in Step A. Numerous

methods exist to carry out this task, as described below in Section 2.4.

• Uncertainty propagation methods usually provide information on the respective impact of the ran-

dom input parameters on the response randomness. Such a hierarchization of the input parameters

is known as sensitivity analysis. Note that this type of analysis (Step C’ in Figure 1.1) may be

sometimes the unique goal of the probabilistic mechanics study.

These main steps are now described in details.
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2.2 Models of physical systems (Step A)

A model of a physical system will be considered throughout the report as a general function M : x 7→
y = M(x) with sufficient regularity conditions so that the subsequent derivations make sense. In this

notation, the input parameters of the model are gathered into a vector x ∈ D ⊂ R
M . The model response

(also termed “response” or “vector of response quantities”) is a vector y =M(x) ∈ R
N .

In the elementary sense, the model may be a simple function defined by its mathematical expression.

More generally, it may be a black box function such as a computer program (e.g. a finite element code)

that takes input values and yields a result. In this case, the model M is known only through pointwise

evaluations y(i) =M(x(i)) for each input vector x(i) for which the computer program is run.

In the fields of civil and mechanical engineering that are more specifically of interest in this report, the

input generally includes:

• parameters describing the geometry of the system, such as dimensions, length of structural members,

cross-sections, etc.;

• parameters describing the material constitutive laws, such as Young’s moduli, Poisson’s ratios, yield

stresses, hardening parameters, etc.;

• parameters describing the loading of the system, such as an applied pressure (wind, waves, etc.), a

prestress state, a temperature-induced stress field, etc.

• parameters describing the boundary conditions such as imposed displacements, contact, etc.

In contrast, the response quantities usually include:

• displacements, e.g. vectors of nodal displacements in the context of finite element analysis;

• components of the elastic (resp. elastoplastic) strain tensor or invariants thereof, e.g. the cumulative

equivalent plastic strain;

• components of the stress tensor, or derived quantities such as equivalent stresses, stress intensity

factors, etc;

• temperature, pore pressure, concentration of species, etc. in case of thermo-mechanical or multi-

physics analysis.

In this thesis, a model as defined above includes both the equations describing the physics of the system

and the algorithms used to solve them. It is implicitly assumed that the model is sufficiently accurate

to predict the behaviour of the system, which means that the equations are relevant to describe the

underlying physical phenomena and that the approximations introduced in the computational scheme, if

any, are mastered.

If these assumptions do no hold strictly, it is always possible to introduce parameters describing the model

uncertainty, i.e. correction factors that will be given a probabilistic description similar to the “physical”

input parameters. Therefore, without any loss of generality, it will be assumed that the models used in

the sequel (possibly including correction factors) faithfully predict the behaviour of the system, provided

the input parameters are perfectly known. Unfortunately, this last statement does generally not hold.
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2.3 Quantification of sources of uncertainty (Step B)

As observed by Soize (2005), distinction between designed and real systems should be made for the sake

of clarity (see also Ditlevsen and Madsen (1996, chap. 3)). A designed system is an abstract object whose

model and associated input parameters have been selected in such a way that design criteria (related

with the purpose of the system) are fulfilled. In contrast, a real system is a physical object that has been

built according to a given design. In practice, a real system never fully matches the initial design, at

least for the following reasons:

• the true dimensions of the real system do not correspond exactly to the design due to the imper-

fections in the manufacturing process;

• the material properties of the real system may differ slightly from the codified properties of the

class of material it is supposed to be made of;

• the loading (resp. boundary conditions) of the designed system are idealized so that they roughly

represent the complexity of those of the real system.

For all these reasons, modelling the input parameters in a probabilistic context makes sense. The uncer-

tainty that affects the input parameters may be of various kinds. They are usually classified as follows:

• aleatoric uncertainty refers to situations when there is a natural variability in the phenomenon under

consideration. As an example, the number-of-cycles-to-failure of a sample specimen submitted to

fatigue loading shows aleatoric uncertainty, since the very life-time of the specimens of the same

material submitted to the same experimental conditions varies from one to the other.

• epistemic uncertainty refers to a lack of knowledge. As an example, the compressive strength

of concrete of a given class shows scattering. On a building site though, measurements of the

compressive strength of the very type of concrete that is used may show far less scattering. In this

case, the initial lack of knowledge has been compensated for by gathering additional information.

For this reason, epistemic uncertainty is qualified as reducible. In a sense, measurement uncertainty

that appears in the fact that the same observation made by two different devices will not provide

exactly the same value, is also epistemic.

In many cases, it is difficult to distinguish clearly between aleatoric and epistemic uncertainty, since both

types may be present in the same system. In most of this report, no distinction is made between the

two categories as far as their modelling is concerned: once the uncertainty in some input parameters has

been recognized, a probabilistic model of the latter is built.

When data is available, establishing a probabilistic model that represents the scattering is merely a

problem of statistics, whose comprehensive treatment is beyond the scope of this report. Note that it

may happen in some cases (e.g. at the design stage of an innovative system) that no data is available. In

this case, a probabilistic model should be prescribed from expert judgment. Finally, Bayesian statistics

may be used to combine prior information (e.g. expert judgment) and scarce data. These various

techniques will be briefly reviewed later on.

In any case, the end product of Step B is the description of the random vector of input parameters X

in terms of its joint probability density function (PDF) fX(x). When spatial variability is modelled by

introducing random fields, the discretization of the latter leads to the introduction of additional basic

random variables that are gathered into the input random vector.

Remarks Note that other approaches may be used to model uncertainties in a non probabilistic

paradigm. The Dempster-Shafer theory of evidence (Dempster, 1968; Shafer, 1976) is one possible ap-

proach and the possibility theory based on fuzzy sets (Zadeh, 1978) is another one. These approaches

are beyond the scope of this report.
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In the domain of stochastic dynamics and random vibrations (which is also not addressed in this report),

a so-called non parametric approach has been recently proposed by Soize (2000) to take into account

both model and parameter uncertainties in structural dynamics (see also Soize (2005) for a comprehensive

overview of this approach). The uncertainties are introduced directly in the operators that mathematically

describe the system dynamics, which leads to the formulation of random mass-, damping- and stiffness

matrices. This approach has been applied to earthquake engineering (Desceliers et al., 2003; Cottereau

et al., 2005), to the modelling of random field tensors of elastic properties (Soize, 2006), random impedance

matrices (Cottereau, 2007; Cottereau et al., 2007), ground-borne vibrations in buildings (Arnst et al.,

2006; Arnst, 2007).

2.4 Uncertainty propagation (Step C)

Let us consider a model x 7→ y = M(x) and suppose that a probabilistic description of the input

parameters is available in terms of a random vector X. The random response is defined by:

Y =M(X) (1.1)

The main goal of probabilistic engineering mechanics is to study the probabilistic content of Y , namely

its joint probability density function fY (y). However, this function is not directly computable except

in simple academic cases. Consequently, methods for uncertainty progagation have to be devised. These

methods may be broadly classified into three categories, according to the specific information on the

random response that is sought (see Figure 1.2).

Figure 1.2: Classification of uncertainty propagation methods

• second moment methods deal with computing the mean value and variance of the model response.

By extension, higher order moment methods may be envisaged. In other words, they merely give

some information on the central part of the response PDF;

• structural reliability methods (Ditlevsen and Madsen, 1996; Melchers, 1999; Lemaire, 2005) essen-

tially investigate the tails of the response PDF by computing the probability of exceeding a pre-

scribed threshold (probability of failure);

• spectral methods represent the complete randomness of the response in an intrinsic way by using

suitable tools of functional analysis. Also known as stochastic finite element methods in the context

of computational mechanics (Ghanem and Spanos, 1991a), spectral methods have been fostering
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an intense research effort for the last ten years. As explained later on, they allow the analyst to

solve problems pertaining to second moment- or structural reliability analysis by a straightforward

post-processing of their basic output, namely expansion coefficients on a suitable basis of functions.

2.5 Sensitivity analysis (Step C’)

The modelling of complex systems usually requires a large number of input parameters. Defining a

proper probabilistic model for these parameters may become a burden. However, in most real-world

problems, only a limited number of input parameters happens to influence the response randomness

significantly1. In this context, sensitivity analysis aims at selecting the important parameters, usually by

defining quantitative importance measures or sensitivity indices that allow the analyst to rank the latter.

As will be seen later on, most methods for uncertainty propagation provide sensitivity measures as a

byproduct of their principal output.

3 Outline

From the general framework described in the previous section, the document is organized into seven

chapters that are now presented.

Chapter 2 first introduces the basics of probability theory in order to set up the notation that will be

used throughout the report. A not too mathematical (and hopefully sufficiently rigorous) formalism is

chosen in order to facilitate the reading. Indeed, this work takes place in an engineering context and is

in no way a thesis in statistics nor in probability theory. Then methods to build a probabilistic model of

the input parameters from data are briefly reviewed. The representation of spatially varying quantities

by random fields is finally addressed.

Chapter 3 presents the classical methods for uncertainty propagation and sensitivity analysis. This

chapter should be considered as a survey of various topics of interest including second moment-, reliability-

and global sensitivity analysis. Apart from introducing tools that are constantly used in the subsequent

chapters, it also provides a unified presentation of well-known results and recent advances in this field.

Chapter 4 introduces the so-called spectral methods that have emerged in the late 80’s in probabilistic

engineering mechanics, and whose interest has dramatically grown up in the last five years. These cutting-

edge approaches aim at representing the random model response as a series expansion onto a suitable

basis. The coefficients of the expansion gather the whole probabilistic content of the random response.

The so-called Galerkin (i.e. intrusive) and non intrusive computational schemes are presented in details,

together with the post-processing techniques.

Chapter 5 introduces advanced methods to incorporate observation data into the uncertainty analysis.

In case of designed systems, the so-called stochastic inverse methods allow the analyst to characterize

the aleatoric uncertainty of some input parameters from measurements of output quantities carried out

on a set of similar structures represented by the same model. In case of a single real structure that is

monitored in time, Bayesian techniques help update both the probabilistic model of input data and the

model predictions.

Chapter 6 addresses time-variant reliability problems in which time plays a particular role. The basic

mathematics of random processes is first recalled and the time-variant reliability problem is posed. Various

1It is always possible to devise mathematical models that are counter-examples to this statement, but they often do not

have any physical meaning.
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techniques to solve it are reviewed, with an emphasis onto the so-called PHI2 method. The space-variant

reliability problems are finally introduced as an extension.

Chapter 7 finally presents different industrial applications which show the potential of the methods

introduced in the previous chapters. A framework for fatigue assessment of nuclear components is first

proposed. The application of structural reliability methods to cooling towers is then presented. Lastly,

non intrusive stochastic finite element methods are applied to the fracture mechanics of a cracked pipe.

4 Reader’s guide

This thesis presents the author’s view on uncertainty propagation and sensitivity analysis in mathematical

models of physical systems. It is a synthesis of seven years of research in this area. This research

was initiated during the post-doctoral stay of the author at the University of California at Berkeley

(Departement of Civil and Environmental Engineering) in 2000. It has been carried on at eDF, R&D

Division, where the author has been working as a research engineer in the Department for Materials and

Mechanics of Components (MMC) since 2001.

As a thesis submitted to graduate for the “habilitation à diriger des recherches”, this document gathers

contributions of the author to probabilistic engineering mechanics. Apart from presenting in a consistent

way these contributions, the thesis also aims at establishing connections between fields that seldom

communicate otherwise (e.g. spectral methods and reliability (resp. sensitivity) analysis). Hopefully it

will bring an original overview of the field and foster future research.

Nonetheless, it is important to discriminate the contributions of the author from the rest of the document.

In this respect, sections devoted to a review of the literature are clearly identified in each chapter,

while sections presenting the original contributions of the author constantly refer to his own relevant

publications.





Chapter 2

Probabilistic model building

1 Introduction

Following the general framework for uncertainty propagation in mathematical models of physical systems,

the analyst has to build a probabilistic description of the data and more precisely, of the input parameters

of the model (Figure 1.1, Step B).

In order to set up the scene, it is necessary to recall first the basics of probability theory. It is not

intended here to fully cover this domain of mathematics, but rather to provide the minimal mathematical

formalism required in the sequel. It includes in particular the notation that will be used throughout the

report (Section 2). Should the reader be familiar with probabilitic methods, he or she can easily skip this

section.

Once the mathematical background has been recalled, the techniques for building the probabilistic model

of the data are summarized in Section 3.

The modelling of spatially varying random parameters requires the introduction of specific tools, namely

random fields. The basic properties of random fields and a short review of discretization techniques are

finally given in Section 4.

2 Basics of probability theory

2.1 Probability space

The following introduction to the basic concepts of probability theory is inspired from various textbooks

including Lin (1967); Lacaze et al. (1997); Saporta (2006).

2.1.1 Algebra of events and probability measure

When a random phenomenon is observed, the set of all possible outcomes defines the sample space

denoted by Ω. An event E is defined as a subset of Ω containing outcomes ω ∈ Ω. The classical notation

used in set theory applies to events. The intersection (resp. the union) of two events A and B is denoted

by A∩B (resp. A∪B). Two events are called disjoint events when their intersection is the empty set ∅.
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The complementary of an event A is denoted by A and satisfies:

A ∩A = ∅ A ∪A = Ω (2.1)

The classical distributivity properties of union and intersection read:

(A ∪B) ∩ C = (A ∩ C) ∪ (B ∩ C)

(A ∩B) ∪ C = (A ∪ C) ∩ (B ∪ C)
(2.2)

Any finite or numerable union (resp. intersection) of events is an event. The following inclusion /

exclusion rules hold:
n
⋃

i=1

Ai =

n
⋂

i=1

Ai

n
⋂

i=1

Ai =
n
⋃

i=1

Ai

(2.3)

A complete set of mutually exclusive events {A1, . . . , An} is defined as:

Ai 6= ∅ i = 1, . . . , n

Ai ∩Aj = ∅ 1 ≤ i < j ≤ n (2.4)
n
⋃

i=1

Ai = Ω

The set of events defines the σ-algebra F associated with Ω. A probability measure allows to associate

numbers to events, i.e. their probability of occurrence. It is defined as an application P : F 7−→ [0, 1]

which follows the Kolmogorov axioms:

P (A) ≥ 0 ∀A ∈ F (2.5)

P (Ω) = 1 (2.6)

P (A ∪B) = P (A) + P (B) ∀A,B ∈ F , A ∩B = ∅ (2.7)

From these axioms, the following elementary results hold:

P (∅) = 0 (2.8)

P
(

A
)

= 1− P (A) (2.9)

P (A ∪B) = P (A) + P (B)− P (A ∩B) ∀A,B ∈ F (2.10)

The probability space constructed by means of these notions is denoted by (Ω, F , P).

2.1.2 Frequentist interpretation of probabilities

The above construction of a probability space is purely mathematical. In practice, the probability of an

event has to be given a clear significance. The so-called frequentist interpretation of probability theory

consists in considering that the probability of an event is the limit of its empirical frequency of occurrence.

Suppose that a random experiment is made n times, and that nA denotes the number of times for which

the event A is observed. The empirical frequency of occurrence of A is defined by:

Freq(A) =
nA

n
(2.11)

The probability of occurence of A is considered as the limit of the empirical frequency of occurrence when

the number of experiments tends to infinity:

P (A) = lim
n→∞

nA

n
(2.12)
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2.1.3 Conditional probability, Bayes’ theorem and rule of total probability

The conditional probability of an event A with respect to an event B is defined by:

P (A|B) =
P (A ∩B)

P (B)
(2.13)

Two events A and B are said independent events when the occurrence of B does not affect the probability

of occurrence of A, i.e. when:

P (A|B) = P (A) (2.14)

As a consequence, two events A and B are independent if and only if:

P (A ∩B) = P (A) P (B) (2.15)

Bayes’ theorem is a straightforward application of the definition in Eq.(2.13). Given two events A and

B, it states that:

P (B|A) =
P (A|B) P (B)

P (A)
(2.16)

It is the foundation of the so-called Bayesian statistics which will be discussed later on. By considering a

set of mutually exclusive and collectively exhaustive events {A1, . . . , An} (Eq.(2.4)) and another event

B, the rule of total probability reads:

P (B) =

n
∑

i=1

P (B|Ai) P (Ai) (2.17)

2.2 Random variables

2.2.1 Definition and basic properties

A real random variable X is a mapping X : Ω 7−→ DX ⊂ R. When DX is a discrete (possibly infinite)

set, the random variable is said discrete, otherwise it is said continuous. A random variable is completely

defined by its cumulative distribution function (CDF) denoted by FX(x):

FX(x) = P (X ≤ x) (2.18)

Examples of CDFs of discrete and continuous random variables are given in Figure 2.1. For a discrete

random variable, the domain of definition may be represented as DX = {x(i), i ∈ N}. The probability

mass function is defined in this case as follows:

pi = P

(

X = x(i)
)

(2.19)

The CDF reads in this case:

FX(x) =
∑

i∈N

pi 1{x≥x(i)}(x) (2.20)

where 1{x≥a}(x) is the indicator function of the set {x ∈ R : x ≥ a} defined by:

1{x≥a}(x) =

{

1 if x ≥ a
0 otherwise

(2.21)

For a continuous random variable, the probability density function (PDF) is defined as:

fX(x) = lim
h→0, h>0

P (x ≤ X ≤ x+ h) /h (2.22)
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Figure 2.1: Examples of cumulative distribution fonctions

Hence:

fX(x) =
dF (x)

dx
(2.23)

The mathematical expectation will be denoted by E [·]. The mean value (or expected value) of a random

variable reads:

µX ≡ E [X] =

∫

DX

x fX(x) dx (2.24)

The expectation of a function g(X) is defined as (provided the integral exists):

E [g(X)] =

∫

DX

g(x) fX(x) dx (2.25)

The n-th moment (resp. centered moment) of X is defined as:

µ′
n = E [Xn] =

∫

DX

xn fX(x) dx (2.26)

µn = E [(X − µX)n] =

∫

DX

(x− µX)n fX(x) dx (2.27)

The variance, standard deviation and coefficient of variation of X are defined as follows:

Var [X] = E
[

(X − µX)2
]

(2.28)

σX =
√

Var [X] (2.29)

CVX =
σX

µX
(2.30)

The normalized third (resp. fourth) order centered moment is called the skewness (resp. kurtosis) coeffi-

cient and it will be denoted by δX (resp. κX):

δX =
1

σ3
X

E
[

(X − µX)3
]

(2.31)

κX =
1

σ4
X

E
[

(X − µX)4
]

(2.32)

The covariance of two random variables X and Y is:

Cov [X , Y ] = E [(X − µX)(Y − µY )] (2.33)
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The correlation coefficient of two random variables is obtained by normalizing the covariance by the

respective standard deviations:

ρX,Y =
Cov [X , Y ]

σX σY
(2.34)

The vectorial space of real random variables with finite second moment (E
[

X2
]

< ∞) is denoted by

L2 (Ω, F , P). The expectation operator defines an inner product on this space:

< X , Y >= E [XY ] (2.35)

When equipped with the above inner product, the space L2 (Ω, F , P) is a Hilbert space. In particular,

two random variables X and Y are said orthogonal if and only if E [XY ] = 0.

2.2.2 Examples

Gaussian random variables are of utmost importance in probability theory. In this report, they will be

denoted by X ∼ N (µ, σ) where µ is the mean value and σ is the standard deviation. The notation ξ will

be used for standard normal random variables, which correspond to µ = 0, σ = 1. The standard normal

PDF ϕ(x) is defined by:

ϕ(x) =
1√
2π

e−x2/2 (2.36)

The standard normal CDF Φ(x) reads:

Φ(x) =

∫ x

−∞

1√
2π

e−x2/2 dx (2.37)

Hence the PDF and CDF of a Gaussian random variable X ∼ N (µ, σ):

fX(x) =
1

σ
ϕ(
x− µ
σ

) FX(x) = Φ(
x− µ
σ

) (2.38)

For the sake of completeness, the notation for the common distributions that will be used in this report

is given in Appendix A.

2.3 Random vectors

A real random vector X is a mapping X : Ω −→ DX ⊂ R
q, where q is the size of the vector (q ≥ 2). It

may be considered as a vector whose components are random variables: X ≡ {X1, . . . , Xq}T, where (.)T

denotes the transposition. Its probabilistic description is contained in its joint PDF denoted by fX(x).

The marginal distribution of a given component Xi is obtained by integrating the joint PDF over all the

remaining components (denoted by dx∼i = dx1 · · · dxi−1dxi+1 · · · dxq throughout this report):

fXi
(xi) =

∫

D∼i
X

fX(x) dx∼i (2.39)

where D∼i
X is the subset of DX defined by {x ∈ DX , xi fixed}. Similarly, the joint distribution of two

components (Xi,Xj) is given by:

fXi,Xj
(xi, xj) =

∫

D∼(i,j)
X

fX(x) dx∼ij (2.40)

The expectation of a random vector is the vector containing the expectation of each component:

µX = {µX1
, . . . , µXq

}T (2.41)
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The covariance matrix (resp. the correlation matrix)of X is a square symmetric matrix C (resp. R) of

size q, defined by the following entries:

Ci,j = Cov [Xi,Xj ] (2.42)

Ri,j = ρXi,Xj
(2.43)

Introducing the diagonal matrix Λ = Diag(σX1
, . . . , σXq

) containing the standard deviation of each

component of X, the covariance and correlation matrices satisfy:

C = ΛRΛ (2.44)

Gaussian random vectors of size q, denoted by X ∼ N (µX ,C), are completely defined by their mean

value vector µX and covariance matrix C through the following joint PDF:

fX(x) = ϕq(x− µX ;C) ≡ (2π)−q/2(detC)−1/2 exp

[

−1

2
(x− µX)T ·C−1 · (x− µX)

]

(2.45)

Standard normal random vectors of size q are defined by Ξ ∼ N (0, Iq) where Iq is the identity matrix of

size q. The associated multinormal PDF is then simply denoted by ϕq(x):

ϕq(x) = (2π)−q/2 exp

[

−1

2
(x2

1 + . . . + x2
q)

]

(2.46)

3 Quantification of sources of uncertainty

3.1 Introduction

In order to quantify the sources of uncertainty, i.e. to build the probabilistic model of the input parameters

of the system under consideration, data shall be gathered. Depending on the amount of available data,

which may range from zero to thousands of observations, various techniques may be used:

• when no data is available to characterize the uncertainties in some input parameters, a probabilistic

model may be prescribed by expert judgment, where physical consideration e.g. on the positiveness

or physical bounds of the parameters may be argued. The principle of maximum entropy may help

quantify the uncertainty in this case;

• when a large amount of data is available, the tools of statistical inference may be fully applied in

order to set up a probabilistic model of the data;

• when both expert judgment and a minimum amount of observations is available, Bayesian inference

may be resorted to;

• in some situations, gathering data on input parameters may be difficult, expensive and sometimes

impossible, while other quantities can be more easily measured. In this case, identification tech-

niques have to be used. This identification may be cast as a stochastic inverse problem or in a

Bayesian context (when prior information is available). Specific techniques to solve these problems

will be described in Chapter 5.

3.2 Expert judgment and literature

In the early stage of design of a system, the engineer often knows little about the uncertainties that

should be taken into account to predict accurately the behaviour of the real system that will be built

based on this design.
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The choice of a specific probabilistic model for the input parameters may be prescribed in this case by

expert judgment, i.e. from some general knowledge on similar systems and associated models previously

dealt with or reported in the literature.

In order to allow the analyst to carry out uncertainty analysis at this early stage of design, the Joint

Committee on Structural Safety (JCSS) has edited the JCSS Probabilistic Model Code (Vrouwenvelder,

1997; Joint Committee on Structural Safety, 2002), which reviews appropriate probabilistic models for

loads (part II) and material properties (part III) that should be used when no other source of information

is available. Note that a large amount of information on probabilistic models for loads and resistance is

available in Melchers (1999, Chap. 7-8).

3.3 Principle of maximum entropy

The principle of maximum entropy (Jaynes, 1957; Kapur and Kesavan, 1992) states that the least biased

probability density function fX(x) : Ω 7→ DX ⊂ R that represents some information on a random variable

X is the one that maximizes its entropy defined by:

H = −
∫

DX

fX(x) log fX(x) dx (2.47)

under the constraints imposed by the available information, e.g. positiveness, bounds, moments, etc.

More precisely, let us consider the class of distributions with support DX ⊂ R such that the following

constraints hold:

E [gj(X)] = γj ∀ j = 1, . . . , ng (2.48)

where {gj , j = 1, . . . , ng} are sufficiently smooth functions such that the above constraint equations make

sense. Boltzmann’s theorem states that the probability density function of maximum entropy (ME) may

be cast as:

fME
X (x) = c exp





ng
∑

j

λj gj(x)



 (2.49)

where the constants {c, λj , j = 1, . . . , ng} have to be determined so that the integral of fME
X over DX is

1 and the constraints in Eq.(2.48) hold.

For instance, if only the mean value and standard deviation is known, the maximum entropy distribution is

Gaussian. More generally, if the conditions in Eq.(2.48) correspond to statistical moments, the maximum

entropy distribution is the exponential of a polynomial (Er, 1998; Puig and Akian, 2004). Note that the

ME distribution of a bounded random variable such that DX = [a, b] is the uniform distribution U [a, b].

3.4 Statistics-based model building

3.4.1 Introduction

In this section, we suppose that observations of certain input parameters are available and that the

number of data points is large enough to apply statistical inference methods. Precisely, suppose that a

sample set {x(1), . . . , x(n)} of input parameter X is available.

The basic assumption in statistics is that each data point {x(k), k = 1, . . . , n} is the realization of a

random variable Xk, and that the Xk’s are independent and identically distributed (i.i.d). The problem

is to find out what is the common probability density function of these variables.

In order to define the best-fit probability density function (that will be used as the input data for

uncertainty propagation), the following steps are usually necessary (Saporta, 2006).
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• the tools of descriptive statistics are used to get a first feeling on the data. For instance, the sample

mean, standard deviation, mode, range are computed and visualization tools such as box plots and

histograms are used;

• a family (or several families) of distribution is chosen that could possibly fit the data (e.g. lognormal,

Gaussian, Weibull, etc.);

• the parameters of the chosen distributions are estimated using e.g. the method of moments or the

maximum likelihood method;

• goodness-of-fit tests are applied in order to validate the assumptions made for each distribution;

• from the results, the most appropriate distribution is selected and will be used for uncertainty

propagation.

In case when a kind of dependence between some parameters is suspected, the above chart should be

applied to the corresponding vector of parameters. In most practical cases, the full multi-dimensional

inference is not feasible. On the contrary, the scalar parameters are studied one-by-one. Then the

correlation structure between parameters is investigated. Note that non parametric statistical tools also

exist, such as the kernel smoothing techniques, see Wand and Jones (1995).

3.4.2 Method of moments and maximum likelihood estimation

A key point in statistical inference is the estimation of the so-called hyperparameters of a distribution from

a sample set of observations. The method of moments is probably the simplest way to infer parameters of

the underlying distribution. It is based on the computation of the empirical moments of the sample set

called sample moments. By equating these sample moments with the moments of the underlying random

variable (see Eq.(2.26)) and by solving the resulting equations, the hyperparameters are determined.

The maximum likelihood method is known to more robust than the method of moments and it is now

briefly reviewed. Let us suppose that the joint PDF fX(x,θ) of a random vector X depends on a

vector of hyperparameters θ of size nθ that is to be determined from a sample set of observations,

say {x(1), . . . ,x(n)}. Provided that the observations are independent and identically distributed, the

likelihood function, defined as a function of θ, reads:

L(θ;x(1), . . . ,x(n)) =

n
∏

i=1

fX(x(i),θ) (2.50)

The principle of maximum likelihood states that the optimal vector of hyperparameters θ̂ML is the one that

maximizes L(θ;x(1), . . . ,x(n)) with respect to θ. In practice, one equivalently minimizes the opposite of

the log-likelihood, namely:

θ̂
ML

= arg min
θ∈R

nθ

(

−
n
∑

i=1

log fX(x(i),θ)

)

(2.51)

From a theoretical viewpoint, the maximum likelihood estimator θ̂
ML

is asymptotically normal and effi-

cient (it has the lowest possible variance among all the unbiased estimators) (Saporta, 2006, Chap. 13).

3.5 Bayesian inference

Broadly speaking, Bayesian statistics allows the analyst to combine prior information on the uncertainty

in the parameters and experimental data to provide a posterior distribution for the random variables.

A comprehensive description of this branch of statistics may be found in Robert (1992); O’Hagan and
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Forster (2004). As far as the use of Bayesian statistics is concerned in this report, the following simplified

formalism is sufficient.

Let us suppose again that the joint PDF fX(x,θ) of random vector X depends on a vector of hyper-

parameters θ of size nθ. In the Bayesian paradigm, a prior distribution pΘ(θ) is assigned to the vector

of hyperparameters according to some prior information, i.e. some expert judgment available before any

observation {x(1), . . . ,x(n)} is collected. Then Bayes’ theorem allows the analyst to define the posterior

distribution of Θ denoted by f ′′
Θ

(θ):

f ′′Θ(θ) =
1

c
pΘ(θ) L(θ;x(1), . . . ,x(n)) (2.52)

where L(θ;x(1), . . . ,x(n)) is the likelihood function defined in Eq.(2.50) and c is a normalizing constant

defined by:

c =

∫

DΘ

pΘ(θ) L(θ;x(1), . . . ,x(n)) dθ (2.53)

In the above equation, DΘ ⊂ R
nθ is the support of pΘ. From the posterior distribution f ′′

Θ
(θ), the

predictive distribution of X reads:

f ′′X(x) =

∫

DΘ

fX(x,θ) f ′′Θ(θ) dθ (2.54)

Alternatively, the analyst may avoid the latter integration by considering a point posterior distribution:

f̂X(x) ≡ fX(x, θ̂) (2.55)

where θ̂ is for instance the mode of f ′′
Θ

. As will be shown in Chapter 5, the above framework may be

extended to cases when the available data is not a sample set of X but e.g. a sample set of response

quantities y(q) =M(x(q)), q = 1, . . . , nobs.

3.6 Stochastic inverse methods

In many industrial problems, although there is experimental evidence of the scattering of some quantities

that are used as input variables of the model under consideration, it is not always possible to measure

these quantities directly. This may be due to the lack of adequate experimental devices or the excessive

cost of data acquisition. In some cases, the model relies upon “non physical” parameters that can of

course not be measured. Note that model correction factors may be classified into this category.

Conversely, data related to the model response may be sometimes easier to obtain. Methods that allow

the analyst to characterize the aleatoric uncertainty of input variables by using measurement data related

to output quantities will be called stochastic inverse methods. As can be guessed from this introduction,

they make use of uncertainty propagation techniques such as those described in Chapters 3 and 4. Thus

a specific part of this report will be devoted to these methods, namely Chapter 5.

3.7 Conclusion

Prescribing the probabilistic model of the input parameters is a key step in probabilistic engineering

problems. It may require the use of expert judgment, statistical techniques or combination of both. It is

not the aim of this report to address specifically the problem of probabilistic model building in the large.

Thus only introductory notions have been recalled in this section.
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4 Modelling spatial variability

4.1 Introduction

The mathematical tools presented in the above sections allow the analyst to build a probabilistic model

that represents the uncertainty in the input variables of a physical model, e.g. geometrical characteristics,

material properties, loading, etc. However, in case the physical system is mathematically described by a

boundary value problem, this description may be insufficient. Indeed, some input parameters may exhibit

spatial variability. The mathematical description of random spatially varying quantities requires the

introduction of random fields. For computational purposes, the information contained in the random field

description has to be reduced, i.e. represented (in an approximate manner though) using a finite number

of random variables. This procedure is referred to as random field discretization. The author devoted

quite a large amount of work to this aspect of probabilistic modelling in Sudret and Der Kiureghian

(2000), from which selected results are reported in the sequel.

4.2 Basics of random fields

4.2.1 Definition

A scalar random field H(x, ω) is a collection of random variables indexed by a continuous parameter

x ∈ B, where B is an open set of R
d describing the geometry of the physical system (d = 1, 2 or 3 in

practice). This means that for a given x0 ∈ B, H(x0 , ω) is a random variable. Conversely, for a given

outcome ω0 ∈ Ω, H(x , ω0) is a realization of the field. It is assumed to be an element of the Hilbert

space L2(B) of square integrable functions over B.

A random field is said unidimensional or multidimensional according to the dimension d of x, that is

d = 1 or d > 1. A vector random field is defined when the quantity attached to point x is a random

vector. For the sake of simplicity, we consider only scalar random fields in the sequel.

4.2.2 Gaussian random fields

Gaussian random fields are of practical interest because they are completely described by a mean function

µ(x) and an autocovariance function CHH(x , x′):

CHH(x , x′) = Cov [H(x) , H(x′)] (2.56)

Alternatively, the correlation structure of the field may be prescribed through the autocorrelation coeffi-

cient function ρ(x , x′) defined as:

ρ(x , x′) =
CHH(x , x′)

σ(x)σ(x′)
(2.57)

In this equation the variance function σ2(x) is defined by:

σ2(x) = CHH(x , x) (2.58)

The most common autocorrelation coefficient functions are reported below in case of unidimensional

homogeneous fields (See Figure 2.2):

• Type A:

ρA(x1, x2) = exp

(

−|x1 − x2|
ℓA

)

(2.59)
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• Type B:

ρB(x1, x2) = exp

(

−
(

x1 − x2

ℓB

)2
)

(2.60)

• Type C:

ρC(x1, x2) =
sin((x1 − x2)/ℓC)

(x1 − x2)/ℓC
(2.61)

In order to study the influence of the shape of the autocorrelation function, it is desirable to find an equiv-

alence between the dimensional parameters ℓA, ℓB , ℓC . The scale of fluctuation proposed by Vanmarcke

(1983) is usually used:

ϑ = 2

∫ ∞

0

ρ(0, x) dx (2.62)

−5 −2.5 0 2.5 5
−0.5

0

0.5

x

ρ(
x)

Type A
Type B
Type C

Figure 2.2: Autocorrelation coefficient functions (scale of fluctuation ϑ = 2)

For the three types of autocorrelation coefficient functions given above, the scales of fluctuation read:

ϑA = 2 ℓA

ϑB =
√
π ℓB (2.63)

ϑC = π ℓC

4.2.3 Principle of random field discretization

Random fields are non numerable infinite sets of correlated random variables, which is computationally

intractable. Discretizing the random field H(x) consists in approximating it by Ĥ(x), which is defined

by means of a finite set of random variables {χi , i = 1, . . . , n}, gathered into a random vector denoted

by χ:

H(x , ω)
Discretization−→ Ĥ(x , ω) = G[x , χ(ω)] (2.64)

Several discretization methods have been developed since the 80’s to carry out this task. They can be

broadly divided into three groups:
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• point discretization methods, where the random variables {χi} are selected values {H(xi), i =

1, . . . , N} at some given points in the domain of discretization B. In practice, a mesh of B is first

constructed. The midpoint method (Der Kiureghian and Ke, 1988) consists in associating a random

variable to the centroid of each element of the mesh and representing the field in each point of the

element by this very random variable. The shape function method (Liu et al., 1986a,b) interpolates

the random variables associated to the nodes of the mesh using standard shape functions of the

finite element method. The optimal linear estimation method (OLE), which is described below,

makes uses of “optimal” shape functions based on the autocorrelation function of the field.

• average discretization methods , where {χi} are weighted integrals of H(·) over a domain Bi:

χi =

∫

Bi

H(x)w(x) dx (2.65)

These methods include the spatial average approach (Vanmarcke and Grigoriu, 1983; Vanmarcke,

1983) and, in a specific context, the weighted integral method (Deodatis, 1990, 1991; Deodatis and

Shinozuka, 1991; Takada, 1990a,b).

• series expansion methods, where the field is exactly represented as a series involving random

variables and deterministic spatial functions. The approximation is then obtained by a truncation

of the series. The Karhunen-Loève Expansion (KL) (Loève, 1978; Ghanem and Spanos, 1991a),

the Expansion Optimal Linear Estimation (EOLE) method (Li and Der Kiureghian, 1993) and the

Orthogonal Series Expansion (OSE) (Zhang and Ellingwood, 1994) pertain to this category. They

will be detailed in the next section.

A comprehensive review and comparison of these methods is presented in Li and Der Kiureghian (1993);

Sudret and Der Kiureghian (2000). The early methods pertaining to the two first categories reveal

relatively inefficient, in the sense that a large number of random variables is required to achieve a good

approximation of the field. Surprisingly, they are still used in many recent papers addressing problems

involving spatial variability.

4.3 Series expansion methods

4.3.1 The Karhunen-Loève expansion

Let us consider a random fieldH(x, ω) whose mean value µ(x) and autocovariance function CHH(x , x′) =

σ(x)σ(x′) ρ(x , x′) are prescribed. The Karhunen-Loève expansion of H(x) reads:

H(x , ω) = µ(x) +

∞
∑

i=1

√

λi ξi(ω)ϕi(x) (2.66)

where {ξi, i ∈ N
∗} are zero-mean orthogonal variables and {λi , ϕi(x)} are solutions of the eigenvalue

problem:
∫

B
CHH(x , x′)ϕi(x

′) dx′ = λi ϕi(x) (2.67)

Eq.(2.67) is a Fredholm integral equation of second kind. The kernel CHH(· , ·) being an autocovariance

function, it is bounded, symmetric and positive definite. Thus the set of eigenfunctions {ϕi, i ∈ N
∗} forms

a complete orthogonal basis. The set of eigenvalues (spectrum) is moreover real, positive and numerable.

The Karhunen-Loève expansion possesses other interesting properties (Ghanem and Spanos, 1991a):

• It is possible to order the eigenvalues λi in a descending series converging to zero. Truncating the

ordered series (2.66) after the M -th term gives the KL approximated field:

Ĥ(x , ω) = µ(x) +

M
∑

i=1

√

λi ξi(ω)ϕi(x) (2.68)
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• The covariance eigenfunction basis {ϕi(x)} is optimal in the sense that the mean square error

(integrated over B) resulting from a truncation after the M -th term is minimized (with respect to

the value it would take when any other basis is chosen).

• When the random field under consideration is Gaussian, the set of {ξi} are independent standard

normal variables. Furthermore, it can be shown that the Karhunen-Loève expansion of Gaussian

fields is almost surely convergent (Loève, 1978). For non Gaussian fields, the KL expansion also

exists, however the random variables appearing in the series are of unknown PDF and may not be

independent (Phoon et al., 2002b, 2005; Li et al., 2007).

• From Eq.(2.68), the error variance obtained when truncating the expansion after M terms turns

out to be, after basic algebra:

Var
[

H(x)− Ĥ(x)
]

= σ2(x)−
M
∑

i=1

λi ϕ
2
i (x) = Var [H(x)]−Var

[

Ĥ(x)
]

≥ 0 (2.69)

The righthand side of the above equation is always positive because it is the variance of some

quantity. This means that the Karhunen-Loève expansion always under-represents the true variance

of the field. The accuracy of the truncated expansion has been investigated in details in Huang

et al. (2001).

Eq.(2.67) can be solved analytically only for few autocovariance functions and geometries of B. De-

tailed closed form solutions for triangular and exponential covariance functions for one-dimensional

homogeneous fields can be found in Ghanem and Spanos (1991a). Otherwise, a numerical solution

to the eigenvalue problem (2.67) can be obtained (same reference, chap. 2). Wavelet techniques

have been recently applied for this purpose in Phoon et al. (2002a), leading to a fairly efficient

approximation scheme.

4.3.2 The orthogonal series expansion

The orthogonal series expansion method (OSE) was proposed by Zhang and Ellingwood (1994). Let

{hi(x)}∞i=1 be a Hilbertian basis of L2(B), i.e. a set of orthonormal functions, satisfying:
∫

B
hi(x)hj(x) dx = δij ( Kronecker symbol) (2.70)

Let H(x , ω) be a random field with prescribed mean value function µ(x) and autocovariance function

CHH(x , x′). Any realization of the field is a function of L2(B), which can be expanded by means of the

orthogonal functions {hi(x)}∞i=1. Considering now all possible outcomes of the field, the coefficients in

the expansion become random variables. Thus the following expansion holds:

H(x , ω) = µ(x) +

∞
∑

i=1

χi(ω)hi(x) (2.71)

Using the orthogonality properties of the basis functions, it can be shown after some basic algebra that:

χi(ω) =

∫

B
[H(x , ω)− µ(x)] hi(x) dx (2.72)

(Σχχ)kl ≡ E [χk χl] =

∫

B

∫

B
CHH(x , x′)hk(x)hl(x

′) dx dx′ (2.73)

If H(x) is Gaussian, Eq.(2.72) proves that {χi}∞i=1 are zero-mean Gaussian random variables, possibly

correlated. After selecting a finite set of functions of size M , it is possible to transform them into an

uncorrelated standard normal vector Ξ by performing a spectral decomposition of the covariance matrix

Σχχ:

Σχχ ·Φ = Φ ·Λ (2.74)
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where Λ is the diagonal matrix containing the eigenvalues λi of Σχχ and Φ is a matrix whose columns

are the corresponding eigenvectors. Random vector χ is related to Ξ by:

χ = Φ ·Λ1/2 ·Ξ (2.75)

After some basic algebra, one gets:

Ĥ(x , ω) = µ(x) +

M
∑

k=1

√

λk ξk(ω)ϕk(x) (2.76)

The above equation is an approximate Karhunen-Loève expansion of the random field H(·), as seen by

comparing with Eq.(2.66). As pointed out by Zhang and Ellingwood (1994), the OSE using a complete

set of orthogonal functions {hi(x)}∞i=1 is strictly equivalent to the Karhunen-Loève expansion in case

the eigenfunctions ϕk(x) of the autocovariance function CHH are approximated by using the same set of

orthogonal functions {hi(x)}∞i=1.

4.3.3 The OLE/EOLE methods

The expansion optimal linear estimation method (EOLE) was proposed by Li and Der Kiureghian (1993).

It is inspired by the kriging method (Matheron, 1962, 1967). It is a special case of the method of regression

on linear functionals, see Ditlevsen (1996). It is based on the pointwise regression of the original random

field with respect to selected values of the field, and a compaction of the data by spectral analysis.

Let us consider a Gaussian random field as defined above and a grid of points {xi ∈ B, i = 1, . . . , N}.
Let us denote by χ the random vector {H(x1), . . . ,H(xN )}T. By construction, χ is a Gaussian vector

whose mean value µχ and covariance matrix Σχ χ read:

µi
χ = µ(xi) (2.77)

(Σχ χ)i,j = Cov [H(xi) , H(xj)] = σ(xi)σ(xj) ρ(xi , xj) (2.78)

The optimal linear estimation (OLE) of random variable H(x) onto the random vector χ reads:

H(x) ≈ µ(x) + ΣT
Hχ(x) · Σ−1

χ χ ·
(

χ− µχ

)

(2.79)

where ΣHχ(x) is a vector whose components are given by:

Σj
Hχ(x) = Cov [H(x) , χj ] = Cov [H(x) , H(xj)] (2.80)

Let us now consider the spectral decomposition of the covariance matrix Σχχ:

Σχχ φi = λi φi i = 1, . . . , N (2.81)

This allows to transform linearly the original vector χ:

χ = µχ +

N
∑

i=1

√

λi ξi(ω)φi (2.82)

where {ξi , i = 1, . . . , N} are independent standard normal variables. Substituting for (2.82) in (2.79)

and using (2.81) yields the EOLE representation of the field:

Ĥ(x , ω) = µ(x) +

N
∑

i=1

ξi(ω)√
λi

φi
TΣH(x)χ (2.83)

As in the Karhunen-Loève expansion, the series may be further truncated after r ≤ N terms, the eigen-

values λi being sorted first in descending order. The variance of the error for EOLE is:

Var
[

H(x)− Ĥ(x)
]

= σ2(x)−
r
∑

i=1

1

λi

(

φT
i ΣH(x) χ

)2

(2.84)
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As in the KL expansion, the second term in the above equation is identical to the variance of Ĥ(x). Thus

EOLE also always under-represents the true variance. Due to the form of (2.84), the error monotonically

decreases with r, the minimal error being obtained when no truncation is made (r = N). This allows

one to define automatically the cut-off value r for a given tolerance in the variance error.

4.3.4 Examples and recommendations

The various series expansion techniques have been thoroughly compared in Sudret and Der Kiureghian

(2000). As an example, consider a univariate unidimensional standard Gaussian field defined over B =

[0, 10] with an autocorrelation coefficient function of type A (ℓA = 5). The pointwise variance errors

obtained for the various techniques and various orders of expansion are plotted in Figure 2.3. It is

observed as expected that the KL expansion is always the most accurate approach, whereas EOLE is

sligthly better than OSE.
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Figure 2.3: Point-wise estimate of the variance error for various discretization schemes and different orders

of expansion (standard Gaussian field with autocorrelation coefficient functions of type A (Eq.(2.59)),

ℓA = 5)

It is also interesting to compare the expansions or random fields only differing from each other by the shape

of their autocorrelation coefficient function. Let us consider a unidimensional standard Gaussian field

defined over B = [0, 10], whose scale of fluctuation is ϑ = 2 and whose autocorrelation coefficient function

is either of type A, B or C (see Eqs.(2.59)-(2.61)). The EOLE method is applied using N = 81 points

(regular grid with stepsize equal to 10/80 = 0.125 and a number r = 16 terms is retained in the EOLE
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expansion. Figure 2.4 presents the evolution of the variance error (Eq.(2.84)) as a function of x ∈ [0, 10]

for the three autocorrelation coefficient functions.
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Figure 2.4: Variance of the error of discretization for various autocorrelation coefficient functions

(x ∈ [0, 10], ϑ = 2, N = 81, r = 16)

It appears that the discretization scheme is not accurate enough for the type A correlation structure

(maximal error of 16.7%), accurate enough for the type B (maximal error of 0.1%) and almost exact for

the type C (maximal error of 10−13% ; the negative values in Figure 2.4-c are due to rounding errors).

This is a general conclusion for such types of correlation structures: type A requires a large number of

terms since the associated field is non differentiable, whereas type B requires few terms and type C even

less. Recommendations for an optimal use of EOLE have been proposed in Sudret and Der Kiureghian

(2000, Chap. 2).

As a consequence, one could expect that Type A Gaussian random fields would be avoided in practical

applications due to their lack of smoothness. Surprisingly the exact opposite is observed in the literature:

type A random fields are used in most (if not all) applications in stochastic finite element analysis (see

Chapter 4) since there exists an analytical solution to their Karhunen-Loève expansion. This point should

receive further attention in the future.

Furthermore, it would be of great interest to use methods such as OSE or EOLE in conjonction with

other types of correlation functions, especially in the context of stochastic finite element analysis when

the input parameters of interest smoothly vary in space.
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4.4 Non Gaussian fields

The discretization of non Gaussian fields has been addressed by Li and Der Kiureghian (1993) in case

they are defined as a non-linear transformation (also called translation) of a Gaussian field:

HNG(·) = NL(H(·)) (2.85)

The discretized field is then simply obtained by:

ĤNG(·) = NL(Ĥ(·)) (2.86)

Advanced methods for discretizing non Gaussian (and possibly non translation) fields have been recently

proposed by Grigoriu (1998); Deodatis and Micaletti (2001); Phoon et al. (2002b, 2005); Li et al. (2007).

They are beyond the scope of this report.

4.5 Conclusion

The modelling of the spatial variability of input parameters requires the introduction of random fields.

For computational purpose, these random fields must be discretized, i.e. approximated by a finite set

of random variables. Various discretization techniques have been reported and discussed. Note that

discretization can be often dealt with independently from the uncertainty propagation to come. Therefore,

without any loss of generality, it will be supposed in the sequel that the input random vector contains

both the “physical” random variables and the basic variables used in the discretization of the input

random fields, if any.

5 Conclusion

Once the mathematical model of the physical system under consideration has been set up (Step A in

the general framework), a probabilistic model for the uncertain input parameters is to be built (Step B).

After recalling the basics of probability theory, this chapter has briefly reviewed methods for building

such a model, depending on the type and amount of available data, namely expert judgment and classical

or Bayesian statistics. The particular issue of modelling spatially varying input quantities by random

fields has been finally addressed. The next chapter now presents elementary methods for uncertainty

propagation and sensitivity analysis (Steps C and C’).





Chapter 3

Classical methods for uncertainty

propagation and sensitivity analysis

1 Introduction

As described in the introduction chapter, methods for propagating the uncertainty in the input parameters

through a model may be classified according to the type of information that is investigated with respect

to the (random) model output.

Suppose the response of a system is modelled by a mathematical function M : R
M 7−→ R that can

be analytical or algorithmic (e.g. a computer code such as a finite element code), and x is the vector

of input parameters1. The uncertainties in the input parameters are modelled by a random vector X.

Accordingly, the response becomes a random variable:

Y =M(X) (3.1)

The full probabilistic content of the response Y is contained in its probability density function fY (y),

which depends on the probability density function of the input parameters fX(x) and the model function

M. However, this quantity is not available analytically except in trivial cases.

The author proposed the following classification of methods for uncertainty propagation in Sudret and

Der Kiureghian (2000):

• When the mean value µY and standard deviation σY of the response are of interest, second moment

analysis methods are to be used. Methods such as the perturbation method, the weighted integral

method or the quadrature method enter this category. They provide a first estimate on the response

variability, which is limited to the first two statistical moments of the response.

• When the tail of the response PDF fY (y) is of interest (i.e. the low quantiles), the problem may

be recast as that of computing a probability of failure, where “failure” is defined in a broad sense

as the event “Y is exceeding a prescribed threshold”. Methods of structural reliability analysis such

as FORM/SORM, importance sampling or directional simulation may be used in this case.

• When the whole PDF fY (y) is of interest, methods of approximation thereof have to be considered.

Monte Carlo simulation (MCS) is the basic approach to solve the problem. Note that this third

1For the sake of simplicity in the notation, a scalar-valued model is considered. However the results presented in the

sequel equally apply for vector-valued models.
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category indirectly encompasses the two first kinds of problems, since the (possibly approximate)

knowledge of fY (y) may be post-processed in order to get statistical moments and quantiles. A

new class of so-called spectral methods based on the expansion of the response quantity Y onto a

suitable basis have emerged in the last fifteen years. They will be addressed in Chapter 4.

In this chapter, well-established methods used to solve the various kinds of problems are reviewed.

Methods for second moment (resp. structural reliability) analysis will be detailed in Section 2 (resp.

Section 3). They include in particular Monte Carlo simulation that may be applied indeed to solve

each of the three kinds of problems described above. MCS is based on the simulation of pseudo-random

numbers. Should the reader not be familiar with this technique, he or she can refer to Appendix A.

Global sensitivity analysis is another interesting aspect of probabilistic mechanics studies. Here, it is

understood as the hierarchization of the input parameters of the model with respect to some output

quantities. Second-moment and reliability analysis provide as a byproduct the so-called importance

factors that allow such a hierarchization. They are introduced together with more advance sensitivity

methods in Section 4.

2 Methods for second moment analysis

2.1 Introduction

In this section, methods for computing the mean value and standard deviation of a response quantity

Y = M(X) are addressed. The specific use of Monte Carlo simulation (MCS) in this context is first

presented. Confidence intervals on the results are derived. Then the perturbation method and the

quadrature method are presented, together with applications in finite element analysis.

2.2 Monte Carlo simulation

Monte Carlo simulation can be used in order to estimate the mean value µY and standard deviation σY

of a response quantity Y =M(X). Assume that a sample set of n input vectors has been generated, say

{x(1), . . . ,x(n)}. The usual estimators of those quantities respectively read:

µ̂Y =
1

n

n
∑

k=1

M
(

x(k)
)

(3.2)

σ̂2
Y =

1

n− 1

n
∑

k=1

(

M
(

x(k)
)

− µ̂Y

)2

(3.3)

The statistics computed on sample sets are random quantities in nature. In probabilistic engineering

mechanics, it is common practice to run a single Monte Carlo simulation (possibly using a large size

sample set), i.e. to provide a single realization of the estimator. A rigourous use of Monte Carlo

simulation should provide confidence intervals on the results though. Suppose that the sample size n

is fixed by the analyst. The estimator in Eq.(3.2) is asymptotically Gaussian due to the central limit

theorem. Thus the (1− α) confidence interval on µY reads, provided n is sufficiently large:

µ̂Y − uα/2 σ̂Y /
√
n− 1 ≤ µ ≤ µ̂Y + uα/2 σ̂Y /

√
n− 1 (3.4)

where uα/2 = −Φ−1(1 − α/2). Alternatively, the latter equation may be used together with a criterion

on the width of the confidence interval. Suppose that the mean value is to be computed with a relative

accuracy of ±εµY
with (1− α) confidence. Then the minimal sample size nmin is:

nmin = 1 + ceil

[

(

uα/2 ĈV Y /εµY

)2
]

(3.5)



2. Methods for second moment analysis 29

where ceil [x] rounds x upwards to the nearest integer and ĈV Y = σ̂Y /µ̂Y is the estimated coefficient

of variation of Y . This minimal number of samples nmin is inversely proportional to the square of the

relative accuracy εµY
and proportional to the square of ĈV Y .

Remarks

• Similar confidence intervals can be derived for the variance of the reponse (Saporta, 2006, Chap. 13).

• Monte Carlo simulation can also be used to compute higher order moments. However, the simulation

does not converge as fast as for the mean and standard deviation, since the variance of the related

estimators of higher moments is generally large.

• The application of Monte Carlo simulation to vector output models (i.e. Y =M(X)) is straight-

forward, since the estimators Eqs.(3.2)-(3.3) may be evaluated component by component.

2.3 Perturbation method

The perturbation method is based on the Taylor series expansion of the model reponse around the mean

value of the input parameters. Its application in structural mechanics dates back to the early 80’s (Handa

and Andersson, 1981; Hisada and Nakagiri, 1981, 1985).

The basic formalism is first developed for a scalar response quantity. The application of the perturbation

method in the context of finite element analysis is then presented.

2.3.1 Taylor series expansion of the model

The Taylor series expansion of the model M(x) around a prescribed value x0 reads:

M(x) =M(x0) +

M
∑

i=1

∂M
∂xi x=x0

(xi − x0,i)

+
1

2

M
∑

i=1

M
∑

j=1

∂2M
∂xi∂xj x=x0

(xi − x0,i)(xj − x0,j) + o
(

‖ x− x0 ‖2
)

(3.6)

In this expression, xi (resp. x0,i) denotes the i-th coordinate of vector x (resp. x0) and o (.) means

“negligible with respect to (.)”.

Let us suppose now that the input is a random vector X and that the expansion is carried out around

its mean value µX = {µX1
, . . . , µXM

}T. Due to linearity of the operator, the expectation of the response

Y =M(X) reads:

E [Y ] = E [M(X)] ≈M(µX) +

M
∑

i=1

∂M
∂xi x=µX

E [(Xi − µXi
)]

+
1

2

M
∑

i=1

M
∑

j=1

∂2M
∂xi∂xj x=µX

E
[

(Xi − µXi
)(Xj − µXj

)
]

(3.7)

By definition, E [(X − µX)] = 0 and E
[

(Xi − µXi
)(Xj − µXj

)
]

= Cij is the generic term of the covari-

ance matrix of X. Thus the approximation of the mean value:

E [Y ] ≈M(µX) +
1

2

M
∑

i=1

M
∑

j=1

Cij
∂2M
∂xi∂xj x=µX

(3.8)
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In Eq.(3.8), the first term in the righthand side, namely M(µX), is the first order approximation of

E [Y ]: it is obtained as the output of the model evaluated at the mean value of the input parameters.

It is worth emphasizing that this result is exact if and only if the model M is an affine fonction of the

input parameters. Moreover, the second order correction term is depending on the covariance matrix C

and the Hessian matrix of the model computed at the mean value point.

The particular case of independent input parameters is worth to be mentioned. The covariance matrix

C is diagonal in this case and contains the variance of each input parameter, say σ2
Xi

. Eq.(3.7) reduces

in this case to:

E [Y ] ≈M(µX) +
1

2

M
∑

i=1

∂2M
∂x2

i x=µX

σ2
Xi

(3.9)

2.3.2 Estimation of the variance of the response

From Eq.(3.8), the variance of the response may be computed as follows:

Var [Y ] = E
[

(Y − E [Y ])2
]

≈ E
[

(Y −M(µX))2
]

(3.10)

From the first order expansion in Eq.(3.6) carried out at the mean value µX , the latter equation simplifies

into:

Var [Y ] ≈ E





(

M
∑

i=1

∂M
∂xi x=µX

(Xi − µXi
)

)2


 (3.11)

Thus the first order expansion of the variance of the response:

Var [Y ] ≈
M
∑

i=1

M
∑

j=1

Cij
∂M
∂xi x=µX

∂M
∂xj x=µX

(3.12)

In case of independent input variables, Eq.(3.12) further simplifies into:

Var [Y ] ≈
M
∑

i=1

(

∂M
∂xi x=µX

)2

σ2
Xi

(3.13)

The above result has the following interpretation: the variance of the response is the sum of contributions

of each input parameter, each contribution being a mix of the variance of this input parameter and of the

(deterministic) gradient of the response with respect to this parameter. This decomposition will allow to

derive sensitivity measures, as shown in Section 4.

2.3.3 Perturbation method in finite element analysis

The above framework for second moment analysis has been applied to finite element models since the

mid 80’s by Handa and Andersson (1981) and Hisada and Nakagiri (1981, 1985) in structural mechanics,

Baecher and Ingra (1981) and Phoon et al. (1990) for geotechnical problems, and Liu et al. (1986a,b) for

non-linear dynamic problems, see also Kleiber and Hien (1992). Recent developments may be found in

Kamiński and Hien (1999); Kamiński (2001). The review in Sudret and Der Kiureghian (2000, Chap. 3)

is now summarized.

For linear elastic problems, the discretized balance equation reads:

K ·U = F (3.14)
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where K is the stiffness matrix, F is the load vector and U is the (unknown) vector of nodal displacements.

The Taylor series expansions of the terms appearing in (3.14) around their mean values read, using the

notation X = µX + α:

K = Ko +

M
∑

i=1

KI
i αi +

1

2

M
∑

i=1

M
∑

j=1

KII
ij αi αj + o(‖ α ‖2) (3.15)

U = Uo +

M
∑

i=1

U I
i αi +

1

2

M
∑

i=1

M
∑

j=1

U II
ij αi αj + o(‖ α ‖2) (3.16)

F = F o +

M
∑

i=1

F I
i αi +

1

2

M
∑

i=1

M
∑

j=1

F II
ij αi αj + o(‖ α ‖2) (3.17)

The first (resp. second) order coefficients ()I
i (resp. ()II

ij ) are obtained from the first and second order

derivatives of the corresponding quantities evaluated at α = 0, e.g.:

KI
i =

∂K

∂αi α=0

(3.18)

KII
ij =

∂2K

∂αi ∂αj α=0

(3.19)

These quantities shall be implemented directly in the finite element code. By substituting for (3.15)-(3.17)

in (3.14) and identifying the coefficients of similar order on both sides of the equation, one successively

obtains:

Uo = K−1
o · F o (3.20)

U I
i = K−1

o ·
(

F I
i −KI

i ·Uo
)

(3.21)

U II
ij = K−1

o ·
(

F II
ij −KI

i ·U I
j −KI

j ·U I
i −KII

ij ·Uo
)

(3.22)

From these expressions, the statistics of U are readily available from those of α (note that, by definition,

the mean value of α is zero, and that its covariance matrix is identical to that of X, namely C). The

second order estimate of the mean value is obtained from (3.16):

E [U ] ≈ Uo +
1

2

M
∑

i=1

M
∑

j=1

Cij U II
ij (3.23)

where the first term Uo is the first-order approximation of the mean. The first order estimate of the

covariance matrix reads:

Cov [U , U ] ≈
M
∑

i=1

M
∑

j=1

U I
i ·
(

U I
j

)T

Cov [αi , αj ] =

M
∑

i=1

M
∑

j=1

Cij U I
i ·
(

U I
j

)T

(3.24)

Again, in case of independent input parameters, the latter expression simplifies into:

Cov [U , U ] ≈
M
∑

i=1

σ2
Xi

U I
i ·
(

U I
i

)T

(3.25)

The second-order approximation of the covariance matrix can also be derived. It involves the moments

of α up to the fourth order and is therefore more intricate to implement and computationnally expensive

to evaluate.

2.3.4 Perturbation method in finite element analysis - random field input

The perturbation method has been applied in the context of spatially variable input parameters by various

authors, together with various methods for discretizing the fields:
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• Using the spatial average (SA) method (see Chapter 2, Section 4.2.3), Baecher and Ingra (1981)

obtained the second moment statistics of the settlement of a foundation over an elastic soil mass

with random Young’s modulus and compared the results with existing one-dimensional analysis.

• Vanmarcke and Grigoriu (1983) obtained the first and second order statistics of the nodal displace-

ments of a cantilever beam.

• Extending the SA formalism to two-dimensional axisymmetric problems, Phoon et al. (1990) ob-

tained the first order statistics of the settlement of a pile embedded in an elastic soil layer with

random Young’s modulus.

• Using the shape function discretization method (see Chapter 2, Section 4.2.3), Liu et al. (1986a,b)

applied the perturbation method to static and dynamic non-linear problems.

In all these applications, the perturbation method yields rather accurate results provided the coefficient

of variation of the input is small, say less than 20%. It seems to be the principal drawback of the method.

Note that a higher perturbation method has been investigated recently in Kamiński (2007).

The author proposed an original application of the perturbation method together with the use of the

EOLE discretization method (Chapter 2, Section 4.3.3) in Sudret (2002). It was shown that in some

cases (e.g. the Young’s modulus of the mechanical model is a random field), the second order terms

KII
ij in Eq.(3.15) are simply equal to zero. The results compared well to those obtained by the spectral

stochastic finite element method (presented later on in Chapter 4).

2.4 Quadrature method

Coming back to the very definition of the moments of a random variable (Eqs.(2.24),(2.27)), the mean

and variance of the model response read:

µY = E [Y ] =

∫

DX

M(x) fX(x) dx (3.26)

σ2
Y = E

[

(Y − µY )2
]

=

∫

DX

[M(x)− µY ]
2
fX(x) dx (3.27)

The integrals in the above equations may be evaluated by quadrature formulæ (Abramowitz and Stegun,

1970). Evaluating an integral by quadrature consists in approximating it by a weighted sum of the

integrand at selected points in DX . The theory of Gaussian quadrature, which is closely related to the

theory of orthogonal polynomials, is briefly reviewed in Appendix B for the sake of exhaustiveness.

It is sufficient to recall here the main results: a one-dimensional quadrature formula allows one to ap-

proximate a one-dimensional weighted integral I as follows:

I ≡
∫

D
h(x)w(x) dx ≈

ν
∑

k=1

ωk h(xk) (3.28)

In this expression, h is a square-integrable function with respect to the measure µ(dx) = w(x) dx, ν is

the order of the quadrature scheme and {(ωk , xk), k = 1, . . . , ν} are the integration weights and points

associated to the weight function w : D → R, respectively.

Suppose now that X is a random vector with independent components i.e. its PDF reads:

fX(x) = fX1
(x1) · · · fXM

(xM ) (3.29)
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Quadrature formulæ may be derived for each probability measure P (dxi) = fXi
(xi) dxi, i = 1, . . . ,M .

Then the expectation of any function of X can be evaluated using a so-called tensorized quadrature

scheme :

E [h(X)] =

∫

DX

h(x) fX(x) dx

≈
ν1
∑

k1=1

· · ·
νM
∑

kM=1

ωk1
· · ·ωkM

h(xk1
, . . . , xkM

)

(3.30)

This tensorized quadrature scheme can be straightforwardly applied to compute the mean value (resp.

the variance) of the model response by setting h(x) ≡ M(x) (resp. h(x) = (M(x) − µY )2). If the

input random vector has dependent components, an isoprobabilistic transform should be first applied,

see Appendix A. Applications of the quadrature approach to second moment analysis can be found in

Baldeweck (1999).

The main drawback of the tensorized scheme is the so-called curse of dimensionality. Suppose indeed

a ν-th order scheme is retained for each dimension. Then the nested sum in Eq.(3.30) has νM terms,

which exponentially increases with respect to M . An approximate strategy based on the selection of the

greatest products of weights has been successfully applied in Sudret and Cherradi (2003). However the

computational cost is not dramatically reduced.

In the context of spectral methods developed in the next chapter, sparse quadrature schemes (also known

as Smolyak quadrature) have been introduced to bypass the curse of dimensionality. This technique could

be equally applied in the context of second moment analysis. It seems however that no specific work in

this direction has been published so far.

2.5 Weighted integral method

This method was developed by Deodatis (1990, 1991), Deodatis and Shinozuka (1991) and also investi-

gated by Takada (1990a,b) in the context of stochastic finite elements. Recent developments can be found

in Wall and Deodatis (1994); Graham and Deodatis (1998, 2001). It is basically intended to linear elastic

structures. The main idea is to consider the element stiffness matrices as basic random quantities. More

precisely, using standard finite element notations, the stiffness matrix associated with a given element

occupying a volume Ve reads (Zienkiewicz and Taylor, 2000):

ke =

∫

Ve

BT ·D ·B dVe (3.31)

where D denotes the elasticity matrix, and B is a matrix that relates the components of strains to the

nodal displacements. Consider now the elasticity matrix obtained as a product of a deterministic matrix

by a univariate random field (e.g. Young’s modulus):

D(x , ω) = Do [1 +H(x , ω)] (3.32)

where Do is the mean value and H(x , ω) is a zero-mean process2. Thus Eq.(3.31) can be rewritten as:

ke(ω) = ke
o + ∆ke(ω) , ∆ke(ω) =

∫

Ve

H(x , ω)BT ·Do ·B dVe (3.33)

The elements in matrix B are obtained by derivation of the element shape functions with respect to

the coordinates. Hence they are polynomials in the latter, say (x , y , z). A given entry of ∆ke is thus

obtained after matrix product (3.33) as:

∆ke
ij(ω) =

∫

Ve

Pij(x, y, z)H(x , ω) dVe (3.34)

2For the sake of clarity, the dependency of random variables on outcomes ω is given in this section.
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where the coefficients of polynomial Pij are obtained from those of B and Do. Let us write Pij as:

Pij(x, y, z) =

NWI
∑

l=1

al
ij x

αlyβlzγl (3.35)

where NWI is the number of monomials in Pij , each of them corresponding to a set of exponents

{αl , βl , γl}. Substituting for (3.35) in (3.34) and introducing the following weighted integrals of ran-

dom field H(·):
χe

l (ω) =

∫

Ve

xαlyβlzγlH(x , ω)dVe (3.36)

it follows that:

∆ke
ij(ω) =

NWI
∑

l=1

al
ij χ

e
l (ω) (3.37)

Collecting now the coefficients al
ij in a matrix ∆ke

l , the (stochastic) element stiffness matrix can finally

be written as:

ke = ke
o +

NWI
∑

l=1

∆ke
l χ

e
l (3.38)

By assembling these contributions over the N elements of the system, a global stochastic stiffness matrix

involving NWI ×N random variables is obtained.

The vector of nodal displacements is then given by a first order Taylor expansion with respect to the

variables χe
l as in Eq.(3.16). Applying the perturbation scheme (Eqs.(3.20)-(3.22)), it is possible to obtain

the coefficients {U0, U I} of this expansion and then the second order statistics of the response, which

depend on the covariance matrix of the χe
l ’s. Introducing variability response functions, one can bound

the variance of each nodal displacement by some quantity that is independent of the correlation structure

of the input field, see details in the original papers.

As already observed in Sudret and Der Kiureghian (2000, Chap. 3), the weighted integral method has

some limitations. First of all, as pointed out by Matthies et al. (1997), it is actually mesh-dependent as it

can be seen from Eq.(3.36). If the correlation length of the random field is small compared to the size of

integration domain Ve, the accuracy of the method is questionable. The computation of the bound of the

response variance may be delicate to implement. Finally, the weighted integral method and the related

variability response functions seems limited to linear elastic problems. It is observed that the method

has not received much attention in the recent years.

2.6 Conclusion

In this section, various second moment methods have been reviewed. Some of them are quite general, i.e.

they can be applied to either analytical or finite element models, possibly including spatial variability

represented by random fields.

The quadrature method allows one to compute higher order moments. However, it is in nature limited

to problems with few random variables due to the exponential growth of the computation time with

the number of input parameters. As a consequence, it is not adapted to problems involving discretized

random fields.

The perturbation method appears quite general and may be applied at a low computational cost, espe-

cially if the gradients of the model response are available. This is often the case when analytical models

are used. This may also be the case for finite element models, when the finite element code itself im-

plement response gradients, e.g. eDF’s own finite element code Code Aster (http://www.code-aster.org)

or OpenSees (http://opensees.berkeley.edu). If such gradients are not directly available, their computa-

tion may always be carried out by a finite difference scheme, with a loss of accuracy and an increased

computational cost though.
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3 Methods for reliability analysis

3.1 Introduction

Structural reliability analysis aims at computing the probability of failure of a mechanical system with

respect to a prescribed failure criterion by accounting for uncertainties arising in the model description

(geometry, material properties) or the environment (loading). It is a general theory whose development

started in the early 70’s. The research in this field is still quite active. The reader is referred to clas-

sical textbooks for a comprehensive presentation (e.g. Ditlevsen and Madsen (1996); Melchers (1999);

Lemaire (2005) among others). This section summarizes some well-established methods to solve reliability

problems. It is intended to facilitate the reading of the following chapters.

3.2 Problem statement

Let us denote by X the vector of basic random variables. When considering models of mechanical systems,

these variables usually describe the randomness in the geometry, material properties and loading. They

can also represent model uncertainties. This set also includes the variables used in the discretization of

random fields, if any. The model of the system yields a vector of response quantities Y = M(X). In

a mechanical context, these response quantities are e.g. displacements, strain or stress components, or

quantities computed from the latter.

The mechanical system is supposed to fail when some requirements of safety or serviceability are not

fulfilled. For each failure mode, a failure criterion is set up. It is mathematically represented by a limit

state function g(X,M(X),X ′). As shown in this expression, the limit state function may depend on

input parameters, response quantities that are obtained from the model and possibly additional random

variables and parameters gathered in X ′. For the sake of simplicity, the sole notation X is used in the

sequel to refer to all random variables involved in the analysis. Let M be the size of X.

Conventionnally, the limit state function g is formulated in such a way that:

• Ds = {x : g(x) > 0} is the safe domain in the space of parameters;

• Df = {x : g(x) ≤ 0} is the failure domain.

The set of points {x : g(x) = 0} defines the limit state surface. Denoting by fX(x) the joint probability

density function of random vector X, the probability of failure of the system is:

Pf =

∫

Df

fX(x) dx (3.39)

In all but academic cases, this integral cannot be computed analytically. Indeed, the failure domain

depends on response quantities (e.g. displacements, strains, stresses, etc.), which are usually computed

by means of computer codes (e.g. finite element code). In other words, the failure domain is implicitly

defined as a function of X. Thus numerical methods have to be employed.

3.3 Monte Carlo simulation

Monte Carlo simulation is a universal method for evaluating integrals such as in Eq.(3.39). Denoting by

1Df
(x) the indicator function of the failure domain (i.e. the function that takes the value 0 in the safe
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domain and 1 in the failure domain), Eq.(3.39) rewrites:

Pf =

∫

RM

1Df
(x) fX(x) dx = E

[

1Df
(x)
]

(3.40)

where E [.] denotes the mathematical expectation. Practically, Eq.(3.40) can be evaluated by simulating

n realizations of the random vector X, say
{

x(1), · · · ,x(n)
}

. For each sample, g
(

x(k)
)

is evaluated. An

estimate of Pf is given by the empirical mean:

Pf,MCS =
1

n

n
∑

k=1

1Df
(x(k)) =

nfail

n
(3.41)

where nfail denotes the number of samples that are in the failure domain. Using a more formal setup,

the estimator of the probability of failure is defined by:

P̂f,MCS =
1

n

n
∑

k=1

1Df
(Xk) (3.42)

where {Xk, k = 1, . . . , n} are i.i.d random vectors having the same joint PDF as X. This estimator is

unbiased (E
[

P̂f,MCS

]

= Pf ) and its variance reads:

Var
[

P̂f,MCS

]

= Pf (1− Pf )/n (3.43)

For common values of the probability of failure (Pf << 1), the above equation allows one to derive the

coefficient of variation of the estimator, namely:

CVP̂f,MCS
=

√

Var
[

P̂f,MCS

]

/Pf ≈ 1/
√

nPf (3.44)

Suppose that the magnitude of Pf is 10−k and a coefficient of variation of 5% is required in its computa-

tion. The above equation shows that a number of samples n > 4.10k+2 should be used, which is clearly

big when small values of Pf are sought.

As a summary, crude Monte Carlo simulation as described above is theoretically applicable whatever

the complexity of the deterministic model. However its computational cost makes it rather impracticable

when the computational cost of each run of the model is non negligible and when the probability of failure

of interest is small.

3.4 First-order reliability method (FORM)

The First Order Reliability Method has been introduced to get an approximation of the probability of

failure at a low cost compared to Monte Carlo simulation, where the cost is measured in terms of the

number of evaluations of the limit state function.

The first step consists in recasting the problem in the standard normal space by using an isoprobabilistic

transform X 7→ Ξ = T (X). Two types of transforms have been mainly used (see Ditlevsen and Madsen

(1996, Chap. 7)):

• the Rosenblatt transform (Rosenblatt, 1952) was introduced in the context of structural reliability

by Hohenbichler and Rackwitz (1981);

• the Nataf transform (Nataf, 1962) was introduced in this context by Der Kiureghian and Liu (1986);

Liu and Der Kiureghian (1986)
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Using one of these transforms (that are recalled in Appendix A), Eq.(3.40) rewrites:

Pf =

∫

Df

fX(x) dx =

∫

{g(T−1(ξ))≤0}
ϕM (ξ) dξ (3.45)

where ϕM (ξ) is the standard multinormal PDF (see Eq.(2.46)). This PDF is maximal at the origin and

decreases exponentially with ‖ξ‖2. Thus the points that contribute at most to the integral in Eq.(3.45)

are those of the failure domain that are closest to the origin of the space.

Thus the second step in FORM consists in determining the so-called design point , i.e. the point of the

failure domain closest to the origin in the standard normal space. This point P ∗ is obtained by solving

an optimization problem:

P ∗ = ξ∗ ≡ arg min
ξ∈RM

{

‖ξ‖2 : g
(

T−1(ξ)
)

≤ 0
}

(3.46)

Several algorithms are available to solve the above optimization problem, e.g. the Rackwitz-Fiessler

algorithm (Rackwitz and Fiessler, 1978), the Abdo-Rackwitz algorithm (Abdo and Rackwitz, 1990), the

iHLRF algorithm (Zhang and Der Kiureghian, 1995, 1997) or the Polak-He algorithm (Haukaas and Der

Kiureghian, 2006), see also Liu and Der Kiureghian (1991) for the comparison of the efficiency of other

algorithms.

Once the design point has been found, the corresponding reliability index is defined as:

β = sign
[

g(T−1(0))
]

· ‖ξ∗‖ (3.47)

It corresponds to the algebraic distance of the design point to the origin, counted as positive if the origin

is in the safe domain, or negative in the other case.

The third step of FORM then consists in replacing the failure domain by the half space HS(P ∗) defined

by means of the hyperplane which is tangent to the limit state surface at the design point (see Figure 3.1).

Figure 3.1: Principle of the First Order Reliability Method (FORM)

The equation of this hyperplane may be cast as:

β −α · ξ = 0 (3.48)

where the unit vector α = ξ∗/β is also normal to the limit state surface at the design point:

α = − ∇g(T−1(ξ∗))

‖ ∇g(T−1(ξ∗)) ‖ (3.49)
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This leads to:

Pf =

∫

{g(T−1(ξ))≤0}
ϕM (ξ) dξ ≈

∫

HS(P∗)

ϕM (ξ) dξ (3.50)

The latter integral can be evaluated in a closed form and gives the first order approximation of the

probability of failure:

Pf ≈ Pf,FORM = Φ(−β) (3.51)

where Φ(x) denotes the standard normal CDF.

3.5 Second-order reliability method (SORM)

The First Order Reliability Method relies upons the linearization of the limit state function around the

design point. Once a FORM result is available, it is natural to look after a second order approximation of

the probability of failure. This is essentially what the various types of Second Order Reliability Methods

(SORM) do.

The so-called curvature-fitting SORM consists in establishing a second order Taylor series expansion of

the limit state function around the design point. This requires the computation of the Hessian of the

limit state function at this point. Using a suitable rotation of the coordinate system in the standard

normal space, say u = R · ξ, the limit state function may be recast as:

g(T−1(ξ)) ≈ β − uM +

M−1
∑

j=1

1

2
κj u

2
j (3.52)

where {κj , j = 1, . . . ,M−1} denote the curvature of the approximate parabolöıd whose axis is set along

the design point direction α. An asymptotic formula for the probabilistic content of such parabolöıd has

been derived by Breitung (1984):

Pf,SORM ≈ Φ(−β)
M−1
∏

j=1

(1− βκj)
−1/2 (3.53)

It clearly appears in this expression that the SORM approximation of Pf is obtained by a correction of

Pf,FORM = Φ(−β). Note that the asymptotic expression Eq.(3.53) becomes singular when βκj → 1. An

exact integral expression of the probabilistic content of a parabolöıd has been proposed by Tvedt (1990)

and can be used in case the asymptotic expression fails.

Other methods for constructing an approximate parabolöıd have been proposed by Der Kiureghian et al.

(1987) (point-fitting SORM). An original algorithm to compute the curvatures can be found in Der

Kiureghian and de Stefano (1991). The theory behind SORM may also be cast as asymptotic expansions

of multidimensional integrals that can be formally applied either in the standard normal space or in the

original space of basic variables, see e.g. Breitung (1989); Rackwitz (2004) for details.

3.6 Importance sampling

The FORM/SORM methods presented in the above paragraphs allow the analyst to compute estimates

of the probability of failure at a relative low computational cost compared to Monte Carlo simulation.

An important property of FORM is that the computational burden is not related to the magnitude of the

probability of failure, in contrast to Monte Carlo simulation. The counterpart of this noticeable feature

is that FORM/SORM estimates come without any indication of accuracy. For sure FORM will be all

the more accurate since the probability of failure is low (due to the asymptotic properties) and the limit

state function is close to linear in the standard normal space. However, in complex problems, there is no

guarantee of any kind that:
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• a FORM algorithm will converge to a design point;

• if so, that the obtained design point is unique (other local minima of the constrained optimiza-

tion problem Eq.(3.46) may exist, see Der Kiureghian and Dakessian (1998) for a possible solving

strategy);

• that the estimates in Eqs.(3.51),(3.53) are sufficiently accurate.

In order to bypass these possible difficulties, a complementary approach called importance sampling was

proposed in the mid 80’s (Harbitz, 1983; Shinozuka, 1983). The basic idea is to recast the definition of

Pf in Eq.(3.40) as follows:

Pf =

∫

RM

1Df
(x)

fX(x)

Ψ(x)
Ψ(x) dx = EΨ

[

1Df
(X)

fX(X)

Ψ(X)

]

(3.54)

where Ψ is a M -dimensional sampling distribution to be selected, and EΨ[·] denotes the expectation with

respect to this distribution.

An estimate of Pf by importance sampling is then given by the empirical mean:

Pf,IS =
1

n

n
∑

k=1

1Df
(x(k))

fX(x(k))

Ψ(x(k))
(3.55)

where the sample set {x(k), k = 1, . . . , n} is drawn according to the sample density Ψ.

The general formulation in Eqs.(3.54)-(3.55) reveals rather efficient when the sampling density Ψ is

selected according to the results of a previous FORM analysis. Using the isoprobabilistic transform,

Eq.(3.54) may be recast in the standard normal space as:

Pf = EΨ

[

1Df
(T−1(ξ))

ϕM (ξ)

Ψ(ξ)

]

(3.56)

Suppose now that FORM has yielded a design point ξ∗ in the standard normal space and choose the

following multinormal sampling density:

Ψ(ξ) = ϕM (ξ − ξ∗) (3.57)

The estimate of the probability of failure in Eq.(3.55) reduces in this case to:

Pf,IS =
exp[β2/2]

n

n
∑

k=1

1Df

(

T−1(ξ(k))
)

exp
[

−ξ(k) · ξ∗
]

(3.58)

As any sampling method, IS comes with confidence intervals on the result. In practice, this allows one to

monitor the simulation according to the coefficient of variation of the estimate. Note that if FORM does

not converge, the sequence of points computed by the optimization algorithm may help select a relevant

sampling density in most cases. For instance, if the non convergence is due to oscillations between several

design points, a sampling density obtained by the mixing of Gaussian distributions centered on these

points may be efficient.

Various improvements of importance sampling have been proposed, such as the axis-orthogonal importance

sampling (Hohenbichler and Rackwitz, 1988), adaptive importance sampling (Bucher, 1988; Au and Beck,

1999), radial importance sampling (Melchers, 1990) and others (Maes et al., 1993; Cambier et al., 2002;

Au and Beck, 2001b, 2003a).
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3.7 Conclusion

A rapid survey of reliability methods has been presented in this section. Even if FORM/ SORM methods

remain the best efficiency vs. accuracy compromise to solve reliability problems associated with industrial

applications, it is important to be able to resort to other techniques such as importance sampling when

the former fail. For the sake of completeness, other methods such as Latin Hypercube sampling (LHS)

(McKay et al., 1979; Olsson et al., 2003) and directional simulation (e.g. Ditlevsen et al. (1987); Bjerager

(1988); Melchers (1990), see also Ditlevsen and Madsen (1996, Chap. 9) and Waarts (2000)) should be

mentioned . Note that the increasing power of the computers has renewed the interest in computationally

costly methods such as the various simulation-based methods.

The approaches reviewed in this section can be used whatever the nature of the model under consideration.

Although originally developed together with analytical models, they have been coupled to finite element

codes quite early as in the pioneering work by Der Kiureghian and Taylor (1983); Der Kiureghian and Ke

(1988) and more recently by Flores Macias (1994); Flores Macias and Lemaire (1997); Lemaire (1998);

Lemaire and Mohamed (2000). So-called finite element reliability methods are now commonly used in

the industry.

It is worth mentioning that the research for new methods to solve more efficiently structural reliability

problems is quite active. Not to mention the spectral methods developed in the next chapter, new tracks

have been proposed in the recent years, including:

• the subset simulation method (Au and Beck, 2001a), which relies upon the decomposition of the

probability of failure into a product of conditional probabilities that are estimated by Markov chain

Monte Carlo simulation (MCMC), an algorithm originally proposed by Metropolis et al. (1953).

Variants of the method have been proposed such as the subset simulation with splitting (Ching

et al., 2005b), the hybrid subset simulation (Ching et al., 2005a) or the spherical subset simulation

(Katafygiotis and Cheung, 2007). Applications can be found in Au and Beck (2003b); Au et al.

(2007).

• the line sampling technique (Schuëller et al., 2004; Koutsourelakis et al., 2004; Schuëller and Pradl-

warter, 2007), which consists in determining first an important direction a that points towards

the failure domain (e.g. parallel to the gradient of the limit state function at the origin of the

standard normal space). Then points are sampled in the hyperplane orthogonal to a, and a line

parallel to a is defined from each of them. The intersection of this line with the limit state surface

is approximately found by some interpolation technique, and the information obtained from all the

lines is gathered in an estimator of the probability of failure whose variance is much smaller than

that obtained by crude Monte Carlo simulation. Applications of this technique can be found in

Pradlwarter et al. (2005, 2007). Note that this technique is very similar to the axis orthogonal

sampling proposed by Hohenbichler and Rackwitz (1988): the important direction a in this case is

the direction to the design point obtained by FORM.

As a conclusion, it is important to remark that the various methods summarized in this section can be

almost unlimitedly combined with each other to solve specific problems. In other words, it is likely that

no universal technique will ever show up to solve reliability problems. It is more the confrontation and

combination of several methods that helps the analyst be confident in the numbers he or she eventually

obtains.
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4 Sensitivity analysis

4.1 Introduction

Broadly speaking, sensitivity analysis (SA) aims at quantifying the relative importance of each input

parameter of a model. Methods of sensitivity analysis are usually classified into two categories:

• local sensitivity analysis concentrates on the local impact of input parameters on the model. It is

based on the computation of the gradient of the response with respect to its parameters around

a nominal value. Numerous techniques have been developed to compute the gradient efficiently,

including finite-difference schemes, direct differentiation or adjoint differentiation methods (Cacuci,

2003).

• global sensitivity analysis tries to quantify the output uncertainty due to the uncertainty in the

input parameters, which are taken singly or in combination with others.

Many papers have been devoted to the latter topic in the last twenty years. A good state-of-the-art of

the techniques is available in Saltelli et al. (2000), who gather the methods into two groups:

• regression-based methods: the standardized regression coefficients (SRC) are based on a linear

regression of the output on the input vector. The input/output Pearson correlation coefficients

measure the effect of each input variable by the correlation it has with the model output. The

partial correlation coefficients (PCC) are based on results of regressions of the model on all input

variables except one. These coefficients are useful to measure the effect of the input variables if

the model is linear, i.e. if the coefficient of determination R2 of the regression is close to one. In

case of nonlinearity, they fail to represent properly the response sensitivities. However, in case of

monotonicity of the model with respect to the input parameters, the rank transform can be used,

leading to the so-called SRRC (standardized rank regression-) and PRCC (partial rank correlation-)

coefficients. As a whole, in case of general non linear non monotonic models, these approaches fail

to produce satisfactory sensitivity measures (Saltelli and Sobol’, 1995).

• variance-based methods: these methods aim at decomposing the variance of the output as a sum of

contributions of each input variable, or combinations thereof. They are sometimes called ANOVA

techniques for “ANalysis Of VAriance”. The correlation ratios proposed in McKay (1995) enter

this category. They are formulated as conditional variances and usually evaluated by crude Monte

Carlo simulation or Latin Hypercube Sampling. The Fourier amplitude sensitivity test (FAST)

indices (Cukier et al., 1978; Saltelli et al., 1999) and the Sobol’ indices (Sobol’, 1993; Saltelli and

Sobol’, 1995; Archer et al., 1997), see also the review in Sobol’ and Kucherenko (2005), are intended

to represent the sensitivities for general models. The Sobol’ indices are practically computed us-

ing Monte Carlo simulation, which makes them hardly applicable for computationally demanding

models, e.g. finite element models in engineering mechanics.

In this section, emphasis is put first on sensitivity measures that are obtained as a byproduct of uncertainty

propagation. Then the theory of Sobol’ indices is presented.
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4.2 Sensitivity measures as a byproduct of uncertainty propagation

4.2.1 From the perturbation method

The perturbation method presented in Section 2 allows to derive an approximate expression of the

response variance, which, in case of independent input random variables, reduces to:

Var [Y ] ≡ σ2
Y ≈

M
∑

i=1

(

∂M
∂xi x=µX

)2

σ2
Xi

(3.59)

It is clear from this expression that the response variance is a sum of contributions related to each input

random variables. By normalizing Eq.(3.59), one defines the relative importance of each input parameter:

η2
i =

(

∂M
∂xi x=µX

)2(
σXi

σY

)2

(3.60)

whose sum adds up to one. This so-called decomposition of the response variance is carried out here in

a linearized context since Eq.(3.59) is based on the Taylor series expansion of the response. The general

formulation of variance decomposition techniques is described below in Section 4.4.

If the input random variables are correlated, no such importance measure can be derived for a single

variable. Nonetheless, the relative importance of a group of correlated variables that is independent of all

the remaining variables can be straightforwardly derived. Note that Eq.(3.60) may still be used, although

the sum of the importance measures will not add up to unity.

4.2.2 From FORM analysis

As shown in Section 3.4, FORM leads to the computation of a linearized limit state function gFORM whose

equation may be cast as:

gFORM(ξ) = β −α · ξ (3.61)

where β is the reliability index and α is the unit vector to the design point (see Eq.(3.48)).

This linearized limit state function can be considered as a margin function which quantifies the “distance”

between a realization ξ of the (transformed) input random vector and the failure surface. Its variance

straightforwardly reads:

Var [gFORM(ξ)] =
M
∑

i=1

α2
i = 1 (3.62)

since the components of ξ are independent and since α is a unit vector.

Thus the coefficients {α2
i , i = 1, . . . ,M}, known as FORM importance factors (Ditlevsen and Madsen,

1996) correspond to the portion of the variance of the linearized margin which is due to each ξi. When

the input random variables X are independent, there is a one-to-one mapping between Xi and ξi, i =

1, . . . ,M . Thus α2
i is interpreted as the importance of the i-th input parameter in the failure event.

When the input random variable are correlated, other measures of importance should be used such as

the γ-factors defined in Der Kiureghian (1999); Haukaas and Der Kiureghian (2005).

4.3 The Sobol’ indices

4.3.1 Sobol’ decomposition

Let us consider a scalar model having M input parameters gathered in an input vector x, and a scalar

output y:

y =M(x) , x ∈ [0, 1]M (3.63)
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where the input parameters are defined on the M -dimensional unit cube [0, 1]M . The Sobol’ decomposi-

tion ofM(x) into summands of increasing dimension reads (Sobol’, 1993):

M(x) =M0 +
M
∑

i=1

Mi(xi) +
∑

1≤i<j≤M

Mij(xi, xj) + · · ·+M12...M (x) (3.64)

whereM0 is a constant and where it is imposed that the integral of each summandMi1...is
(xi1 , . . . , xis

)

over any of its arguments is zero, i.e. :

∫ 1

0

Mi1...is
(xi1 , . . . , xis

) dxik
= 0 for 1 ≤ k ≤ s (3.65)

The classical properties of this decomposition are the following (Homma and Saltelli, 1996):

• The sum in Eq.(3.64) contains a number of summands equal to:

M
∑

i=1

(

M

i

)

= 2M − 1 (3.66)

• The constant M0 is the mean value of the function:

M0 =

∫

[0,1]M
M(x) dx (3.67)

where dx stands for dx1 . . . dxM for the sake of simplicity.

• Due to Eq.(3.65), the summands are orthogonal to each other in the following sense:

∫

[0,1]M
Mi1...is

(xi1 , . . . , xis
)Mj1...jt

(xj1 , . . . , xjt
) dx = 0 for {i1, . . . , is} 6= {j1, . . . , jt}

(3.68)

With the above assumptions, the decomposition in Eq.(3.64) is unique wheneverM(x) is integrable over

[0, 1]M . Moreover, the terms in the decomposition may be derived analytically. Indeed, the univariate

terms read:

Mi(xi) =

∫

[0,1]M−1

M(x) dx∼i −M0 (3.69)

In this expression,
∫

[0,1]M−1 dx∼i denotes the integration over all variables except xi. Similarly, the

bivariate terms read:

Mij(xi, xj) =

∫

[0,1]M−2

M(x) dx∼{ij} −Mi(xi)−Mj(xj)−M0 (3.70)

Here again,
∫

[0,1]M−2 dx∼{ij} denotes the integration over all parameters except xi and xj . More generally,

the symbol “∼” means “complementary of” in the sequel. Following this construction, any summand

Mi1...is
(xi1 , . . . , xis

) may be written as the difference of a multidimensional integral and summands of

lower order. However, these functions need not be explicitly computed to carry out sensitivity analysis,

as explained below.

4.3.2 Use in ANOVA

Consider now that the input parameters are independent random variables uniformly distributed over

[0, 1]:

X = {X1, . . . , XM}T, Xi ∼ U(0, 1), i = 1, . . . ,M (3.71)
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As a consequence, the model response Y =M(X) is a random variable, whose variance D (also called

total variance in the literature on global sensitivity) reads:

D = Var [M(X)] =

∫

[0,1]M
M2(x) dx−M2

0 (3.72)

By integrating the square of Eq.(3.64) and by using (3.68), it is possible to decompose the total variance

(3.72) as follows:

D =

M
∑

i=1

Di +
∑

1≤i<j≤M

Dij + · · ·+D12...M (3.73)

where the partial variances appearing in the above expansion read:

Di1...is
=

∫

[0,1]s
M2

i1...is
(xi1 , . . . , xis

) dxi1 . . . dxis
1 ≤ i1 < · · · < is ≤M , s = 1, . . . ,M (3.74)

The Sobol’ indices are defined as follows :

Si1...is
= Di1...is

/D (3.75)

By definition, according to Eqs.(3.73),(3.75), they satisfy:

M
∑

i=1

Si +
∑

1≤i<j≤M

Sij + · · ·+ S12...M = 1 (3.76)

Thus each index Si1...is
is a sensitivity measure describing which amount of the total variance is due to

the uncertainties in the set of input parameters {i1 . . . is}. The first order indices Si give the influence

of each parameter taken alone whereas the higher order indices account for possible mixed influence of

various parameters.

The total sensitivity indices STi
have been defined in order to evaluate the total effect of an input

parameter (Homma and Saltelli, 1996). They are defined from the sum of all partial sensitivity indices

Di1...is
involving parameter i:

STi
=
∑

Ii

Di1...is
/D Ii = {{i1, . . . , is} ⊃ {i}} (3.77)

It is easy to show that:

STi
= 1− S∼i (3.78)

where S∼i is the sum of all Si1...is
that do not include index i.

4.3.3 Computation by Monte Carlo simulation

The Sobol’ indices are usually computed using Monte Carlo simulation. From Eqs.(3.67),(3.72), the

following estimates of the mean value, total and partial variance can be derived using n samples (Saltelli

et al., 2000):

M̂0 =
1

n

n
∑

k=1

M(x(k)) (3.79)

D̂ =
1

n

n
∑

k=1

M2(x(k))− M̂2
0 (3.80)

D̂i =
1

n

n
∑

k=1

M(x
(k),1
(∼i) , x

(k),1
i )M(x

(k),2
(∼i) , x

(k),1
i )− M̂2

0 (3.81)
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In the latter equations, x(k) = (xk
1 , x

k
2 , . . . , x

k
M ) denotes the k-th sample point and:

x
(k)
(∼i) = (x

(k)
1 , x

(k)
2 , . . . , x

(k)
(i−1), x

(k)
(i+1), . . . , x

(k)
M ) (3.82)

Moreover the superscripts 1 and 2 in Eq.(3.81) indicate that two different samples are generated and their

components mixed. A similar expression allows to estimate in a single shot the total sensitivity index

STi
:

D̂∼i =
1

n

n
∑

k=1

M(x
(k),1
(∼i) , x

(k),1
i )M(x

(k),1
(∼i) , x

(k),2
i )− M̂2

0 ŜTi
= 1− D̂∼i/D̂ (3.83)

The Sobol’ indices are known to be good descriptors of the sensitivity of the model to its input parameters,

since they do not suppose any kind of linearity or monotonicity in the model. However, the full description

requires the evaluation of 2M Monte Carlo integrals, which is not practically feasible unless M is low. In

practice, the analyst often computes the first-order and total sensitivity indices, sometimes the second

order ones. Note that the first-order indices are equivalent to the sensitivity indices obtained by the

FAST method (Cukier et al., 1978; Saltelli and Bolado, 1998), whose computation may be more efficient.

Moreover, recent work has been devoted to further reduce the computational cost in evaluating the

Sobol’ indices (Saltelli, 2002) and obtain “for free” additional indices, see also the accelerated estimation

procedure for variance-based measures in Oakley and O’Hagan (2004).

4.4 Conclusion

In this section, various sensitivity measures available in the literature have been reviewed and discussed.

The importance factors derived from the perturbation method (resp. FORM) are obtained almost for

free once the propagation of the uncertainties through the model has been carried out. This is the reason

why they are popular.

However, the formalism of Sobol’ indices appears more robust and versatile, since it does not rely upon

any linearization of the model. The usual technique to compute these Sobol’ indices is Monte Carlo

simulation, which reveals inappropriate when each evaluation of the model is costly. Moreover, the

convergence of the estimators of the Sobol’ indices is rather low, see a discussion in Homma and Saltelli

(1996). It will be shown in the next chapter that the Sobol’ approach to sensitivity analysis is particularly

interesting when combined with spectral methods.

5 Conclusion

Well-known methods for uncertainty propagation and sensitivity analysis have been reviewed in this

chapter. As far as second moment analysis is concerned, the perturbation method remains the best com-

promise between accuracy and efficiency, especially in case the coefficient of variation of the input random

variables is not too large and the model is not too non linear. It may be particularly efficient when used

with modern finite element codes that implement the gradients of the response quantities, e.g. OpenSees

(Pacific Earthquake Engineering and Research Center, 2004) or Code-Aster (eDF, R&D Division, 2006).

Note that the quadrature approach using sparse schemes could be an interesting alternative in cases when

the size of the input random vector is not too large. The advantage of this approach leads in the fact

that higher order moments may be estimated in the same shot.

As far as reliability analysis is concerned, FORM/SORM methods complemented by importance sampling

are robust tools that allow the analyst to solve the problem in most cases. Recent techniques such as

subset simulation and line sampling seem attractive when the complexity of the limit state function makes

the classical methods fail.





Chapter 4

Spectral methods

1 Introduction

The classical methods for moment and reliability analysis presented in chapter 3 have been devised to

solve specific problems of probabilistic mechanics. Precisely, methods such as the perturbation method

for second moment analysis, or FORM /SORM for reliability analysis introduce relevant assumptions and

approximations to attain their goal. Should the analyst be interested first in the mean and the standard

deviation of the model response, and then in some failure event, he or she should perform independently

both types of analysis.

From a heuristic point of view, it is clear though that the probabilistic content of a response quantity

is contained in its probability density function (PDF). If the PDF were accurately predicted both in its

central part and in the tails, second moment- as well as reliability analysis could be easily performed as

a post-processing. In a sense, Monte Carlo simulation (MCS) provides such a complete representation:

samples of the parameters are drawn according to the input probabilistic model and the corresponding

response values can be gathered in a histogram or an empirical cumulative distribution function (CDF).

However, the efficiency of such a procedure is low, meaning that the number of samples has to be large

to get accurate results. For instance, it was observed in Chapter 3 that the number of samples required

to evaluate a probability of failure of magnitude 10−k is about 4.10k+2, when a relative accuracy of 5%

is prescribed.

From a more mathematical point of view, the random response obtained by propagating the input prob-

abilistic model through the mathematical model of the physical system is a member of a suitable space

of random vectors. In this respect, MCS can be viewed as a collocation-type method which allows the

pointwise characterization of this random response.

In order to understand the philosophy (and related poor efficiency) of MCS better, a comparison with

a classical deterministic continuum mechanics problem may be fruitful. Consider an elastic problem

posed on a domain B ⊂ R
d, d = 1, 2, 3 where the displacement field u(x), x ∈ B is the main unknown.

The counterpart of Monte Carlo simulation to solve this deterministic problem would be a method that

provides, for any x0 ∈ B the sole response quantity u(x0). To get a flavor of the complete displacement

field would then require applying this (obviously not efficient) method to a large set of sample points in

B.

Of course, deterministic problems in continuum mechanics are not solved this way. In contrast, when the

finite element method is considered, the displacement field, which is a member of a suitable functional

space H (introduced in the weak formulation of the governing equations) is approximated onto a finite
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N -dimensional subspace H(N) ⊂ H. The basis functions spanning this subspace are in practice associated

with a mesh of domain B and known as shape functions. Then the boundary value problem is reduced to

finding the nodal displacements, which are the coordinates of the approximate displacement field in this

basis.

The so-called spectral methods presented in this chapter are nothing but a transcription of the above

well known ideas to the probabilistic space: instead of apprehending the (say, scalar) random response

Y (ω) = M(X(ω)) by a set of realizations {y(i) = M(x(i))}, as MCS does, it will rather be expanded

onto a suitable basis of the space of second-order random variables and represented by its “coordinates”

{yj , j ∈ N}:
Y (ω) =

∑

j∈N

yj φj(ω) (4.1)

In this equation, the notation ω has been kept in order to show that the response Y as well as the basis

functions are random variables. It will be used in the sequel anytime it is necessary for the sake of clarity,

and omitted otherwise.

The mathematical setting for the representation of models having random input is first described in

Section 2. Two categories of methods to compute the expansion coefficients in Eq.(4.1) are then reviewed,

namely:

• the Galerkin or intrusive approach, which will be presented from its historical perspective (Sec-

tion 3).

• the non intrusive approaches, namely the projection and regression methods, which have been more

specifically investigated by the author (Section 4).

The post-processing of the coefficients {yj , j ∈ N} for moment, reliability and global sensitivity analyses

is then detailed in Section 5. Application examples are presented in Section 6.

2 Spectral representation of functions of random vectors

This section is inspired by the presentation proposed by Soize and Ghanem (2004) for introducing the

polynomial chaos representation. It is related to the use of Hilbertian algebra to characterize square

integrable functions of random vectors.

2.1 Introduction

Of interest is a physical system described by a mathematical model M having M input parameters

and N output quantities. Suppose that the uncertainties in the system are modelled in a probabilistic

framework by an input random vector X. Let us denote by fX(x) its joint PDF, and by PX the associated

probability measure such that PX(dx) = fX(x) dx.

The model response is cast as a random vector Y of size N such that:

Y =M(X) (4.2)

In order to properly characterize the random properties of Y , suitable functional spaces have to be defined.

The case of scalar models (N = 1) is first addressed for the sake of simplicity. Then the extension to the

vector case is presented.
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2.2 Representation of scalar-valued models

2.2.1 Definition

In this section, a scalar-valued model M : R
M 7→ R is considered. Let us suppose that its random

response Y =M(X) is a second-order random variable:

E
[

Y 2
]

< +∞ (4.3)

Let us denote by H = L2
PX

(

R
M ,R

)

the Hilbert space of PX -square integrable real-valued functions of

x ∈ R
M equipped with the inner product:

< u , v >H≡
∫

RM

u(x) v(x) fX(x) dx (4.4)

Eq.(4.3) is equivalent to:

E
[

M2(X)
]

=<M ,M >H < +∞ (4.5)

Consequently, considering model responses that are second-moment random variables is equivalent to

considering models that belong to the Hilbert space H.

2.2.2 Hilbertian basis of H – Case of independent input random variables

In this paragraph, it is supposed that the random vector X has independent components, say {Xi, i =

1, . . . ,M} with associated marginal PDF fXi
(xi). It follows that the PDF of X reads:

fX(x) =

M
∏

k=1

fXi
(xi) (4.6)

Let Hi = L2
PXi

(R,R) be the real Hilbert space associated with the probability measure PXi
such that

PXi
(dxi) = fXi

(xi) dxi and equipped with the inner product:

< u , v >Hi
≡
∫

R

u(x) v(x) fXi
(x) dx (4.7)

Let {ψi
k, k ∈ N} be a Hilbertian basis of Hi, i.e. a complete orthonormal family of functions satisfying:

< ψi
k , ψ

i
l >Hi

= δkl (Kronecker symbol) (4.8)

Let H̃ be the real Hilbert space defined by the following tensor product:

H̃ ≡
M
⊗

i=1

Hi (4.9)

equipped with the inner product:

< u , v >H̃≡
∫

R

. . .

∫

R

u(x1, . . . , xM ) v(x1, . . . , xM ) fX1
(x1) . . . fXM

(xM ) dx1 . . . dxM (4.10)

From Eqs.(4.8),(4.9), one can define the following Hilbertian basis of H̃:

{

ψ1
k1
⊗ · · · ⊗ ψM

kM
, (k1, . . . , kM ) ∈ N

M
}

(4.11)

By substituting for Eq.(4.6) in Eq.(4.10) and comparing with Eq.(4.4), it is clear that:

< u , v >H̃=

∫

RM

u(x) v(x) fX(x)dx =< u , v >H (4.12)
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showing that H and H̃ are isomorphic. Thus any function belonging to H may be uniquely represented

as its series expansion onto the basis defined in Eq.(4.11):

∀h ∈ H, h(x1, . . . , xM ) =
∑

α1∈N

· · ·
∑

αM∈N

hα1...αM
ψ1

α1
(x1) . . . ψ

M
αM

(xM ) (4.13)

For convenience in the notation, the above equation may be rewritten as:

h(x) =
∑

α∈NM

hα Ψα(x) (4.14)

where α denotes all the possible M -uplets (α1, . . . αM ) ∈ N
M and Ψα(x) is defined by:

Ψα(x) ≡
M
∏

i=1

ψi
αi

(xi) (4.15)

2.2.3 Hilbertian basis of H – Case of mutually dependent input random variables

In the general case, the input vector X may have mutually dependent components. Nevertheless, it is

possible to derive a Hilbertian basis of H based on the above construction.

Let us introduce for this purpose the marginal PDFs {fXi
(xi), i = 1, . . . ,M} of the random variables

{Xi, i = 1, . . . ,M} (see Eq.(2.39)). Soize and Ghanem (2004) show that the following set of functions

is a Hilbertian basis of H:

φα(x) =

[

∏M
i=1 fXi

(xi)

fX(x)

]1/2

Ψα(x) (4.16)

where Ψα(x) has been defined in Eq.(4.15).

The above equation can be further elaborated by introducing the formalism of copula theory (Nelsen,

1999). This theory is a tool for the representation of multivariate CDFs, which is of common use in

financial engineering whereas rather unused in probabilistic engineering mechanics. Copula theory allows

to clearly separate the description of a random vector X into two parts:

• the marginal distribution (or margin) of each component, denoted by {FXi
(xi), i = 1, . . . ,M};

• the structure of dependence between these components, contained in a so-called copula function

C : [0, 1]M 7−→ [0, 1], which is nothing but a M -dimensional CDF with standard uniform margins.

According to Sklar’s theorem (Sklar, 1959), a continuous joint CDF FX(x) has a unique representation

in terms of its margins and its copula function C(u1, . . . , uM ):

FX(x) = C(FX1
(x1), , . . . , FXM

(xM )) (4.17)

The practical feature of this approach appears when the probabilistic model of X is to be built from

data: the models for the margins is first inferred, then suitable methods for determining the appropriate

copula function are applied. Introducing the density of the copula:

c(u1, . . . , uM ) =
∂MC(u1, . . . , uM )

∂u1 . . . ∂uM
(4.18)

it comes from Eq.(4.17):

fX(x) = c(FX1
(x1), . . . , FXM

(xM )) fX1
(x1) . . . fXM

(xM ) (4.19)
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Thus the basis functions in Eq.(4.16) finally reduce to:

φα(x) =
Ψα(x)

[c(FX1
(x1), . . . , FXM

(xM ))]
1/2

(4.20)

Note that the above basis functions reduce to those in Eq.(4.15) when the components of the input

random vector X are mutually independent: in this case indeed, the copula in Eq.(4.17) (called product

or independent copula) and its density respectively read:

Cind(u1, . . . , uM ) = u1 u2 . . . uM cind(u1, . . . , uM ) = 1 (4.21)

2.2.4 Polynomial chaos representation of the model response

One can observe that the tensor structure in Eq.(4.11) eventually reduces the problem to specifying

the Hilbertian basis of Hi = L2
PXi

(R,R), which is the space of univariate scalar functions which are

square-integrable with respect to PXi
. As seen in Eqs.(4.7)-(4.8), such a basis {ψi

k, k ∈ N} satisfies:

∫

R

ψi
k(x)ψi

l (x)fXi
(x) dx = δkl (4.22)

From the above equation, the link between this Hilbertian basis and the theory of orthogonal polynomials

is obvious. As the marginal PDF fXi
is a suitable weight function, a family of orthogonal polynomials

denoted by
{

P
fXi

k , k ∈ N

}

can be built accordingly (see Appendix B for details). After proper normal-

ization, one finally gets an orthonormal polynomial basis of Hi:

ψi
k(x) =

P
fXi

k (x)

‖ P fXi

k ‖Hi

(4.23)

where ‖ P fXi

k ‖Hi
=

√

< P
fXi

k , P
fXi

k >Hi
.

Should the basic random variables be independent standard normal (X ≡ ξ ), then the obtained poly-

nomials are the Hermite polynomials Hek
(x), k ∈ N. In this case, any random variable Y defined as

the random response of a model (i.e. obtained by the propagation of the uncertainties contained in ξ

through the model) may be cast as the following series expansion called Wiener-Hermite polynomial chaos

expansion:

Y =
∑

α∈NM

yα Ψα(ξ) (4.24)

The first generalization to other kinds of basic random variables has been proposed by Xiu and Karni-

adakis (2002) under the name generalized polynomial chaos. By a heuristic generalization of the above

equation, and using the so-called Askey scheme of orthogonal polynomials (Askey and Wilson, 1985), the

authors could represent functions of any kind of independent basic variables. The paper by Soize and

Ghanem (2004), which serves as a basis for the current chapter, is an extension of this construction that

poses a more rigorous framework and relaxes the assumption of independence.

2.2.5 Two strategies of application

Practically speaking, the polynomial chaos representation may be used in one or the other of the following

forms:
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• for a given input random vector X defined by its joint PDF fX(x) (or equivalently its margins and

its copula, see Eq.(4.19)), gathering Eqs.(4.11),(4.20),(4.23) yields the following basis of H:

φα(x) =
1

dα

M
∏

i=1

P
fXi
αi (xi)

[c(FX1
(x1), . . . , FXM

(xM ))]
1/2

, α ∈ N
M (4.25)

where dα is a normalizing coefficient such that ‖ φα ‖H= 1. Any second-order response quantity is

thus expanded as follows:

Y =
∑

α∈NM

yα φα(X) (4.26)

This representation will be called generalized polynomial chaos expansion in the sequel (as it is

usual in the literature). Strictly speaking, the above basis functions are polynomials only when the

input variables are independent, but the original name is kept for the sake of clarity.

Similarly, if these normalizing coefficients are easily obtained when the basic variables are inde-

pendent, this may not be the case in general. The following alternative strategy may then be

used.

• The input random vector X is first transformed into a basic random vector denoted by U (e.g.

a standard normal random vector) using an isoprobabilistic transform X = T−1(U). Then the

compound model M◦ T−1 is represented onto the polynomial chaos basis associated with U :

Y ≡M(T−1(U)) =
∑

α∈NM

yα Ψα(U) (4.27)

2.3 Representation of vector-valued models

The construction made in Section 2.2 is now easily extended to vector-valued models. For this purpose, let

us introduce the canonical basis of R
N , say {b1, . . . , bN}, and let us denote the canonical inner product

in R
N by:

uTv ≡< u , v >RN =

N
∑

k=1

ukvk (4.28)

where:

u =
N
∑

k=1

ukbk v =
N
∑

k=1

vkbk (4.29)

Let us finally denote by ‖ u ‖ the Euclidean norm:

‖ u ‖2=
N
∑

k=1

u2
k (4.30)

Suppose now that the random response Y =M(X) is a second-order random vector satisfying:

E
[

‖ Y ‖2
]

< +∞ (4.31)

Let us denote by H(N) = L2
PX

(

R
M ,RN

)

the space of N -dimensional vector functions whose components

are members of H, i.e. :

H(N) = H⊗ R
N (4.32)

and let it be equipped with the following inner product:

< u , v >H(N)=

N
∑

k=1

< uk , vk >H (4.33)
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where {uk(x), k = 1, . . . , N} (resp. {vk(x), k = 1, . . . , N}) are the component functions of u (resp. v).

Since:

E
[

‖ Y ‖2
]

= E
[

‖ M(X) ‖2
]

≡<M(X) ,M(X) >H(N) (4.34)

assuming this is a finite quantity is equivalent to require that the vector-valued model M is a member

of H(N).

In case X has independent components, the following basis tensor product is a possible Hilbertian basis

of H(N) due to Eqs.(4.14),(4.32):

{

Ψα ⊗ bk, α ∈ N
M , k = 1, . . . , N

}

(4.35)

Thus the representation of any function h ∈ H(N) reads:

h(x) =
∑

α∈NM

N
∑

k=1

hk,α Ψα(x) bk (4.36)

Introducing the notation hα =
N
∑

k=1

hk,α bk, one gets the following representation of any member of H(N):

h(x) =
∑

α∈NM

hα Ψα(x) , hα ∈ R
N (4.37)

As a consequence, the random model response Y =M(X) has a unique chaos representation:

Y =
∑

α∈NM

yα Ψα(X) (4.38)

where the vector coefficients
{

yα, α ∈ N
M
}

have to be computed.

2.4 Practical implementation

For practical implementation, finite dimensional polynomial chaoses have to be built. The usual choice

consists in selecting those multivariate polynomials that have a total degree q = |α| ≡∑M
i=1 αi less than

a maximal degree p. The size of this finite-dimensional basis is denoted by P :

P =

(

M + p

p

)

(4.39)

The full procedure requires the following steps:

• the construction of the sets of univariate orthogonal polynomials associated with each marginal

PDF of the components of X;

• the computation of the associated norm of these polynomials, in order to make the basis orthonormal

(see Eq.(4.25));

• an algorithm that builds the set of multi-indices α which correspond to the P multivariate polyno-

mials based on M variables, whose degree is less than or equal to p. Ghanem and Spanos (1991a)

proposed a strategy based on symbolic computing in case of Hermite chaos. A completely different

algorithm, which is applicable to general chaoses, was proposed by the author in Sudret and Der

Kiureghian (2000), see also Sudret et al. (2006).
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2.5 Conclusion

The name polynomial chaos has been originally introduced together with an infinite numerable family

of independent standard normal random variables {ξj , j > 0} by Wiener (1938), in order to represent

functions of Gaussian random processes. This representation was introduced in the late 80’s by Ghanem

and Spanos (1990, 1991a) in order to solve boundary value problems with stochastic coefficients. The

Cameron-Martin theorem states that the obtained series expansion is L2-convergent (Cameron and Mar-

tin, 1947). The practical computation of the series expansion coefficients requires to truncate both the

set of basic variables and the polynomial chaos expansion. The finite-dimensional approach then results

in the same formalism as that developed in Section 2.3, although the starting point of the representation

is conceptually different. However, it is believed that the formalism developed above is more fruitful,

especially for generalizing to problems with input random vectors of arbitrary probability measure (see

Soize and Ghanem (2004) for a detailed discussion).

3 Galerkin solution schemes

3.1 Brief history

The Spectral Stochastic Finite Element Method (SSFEM) was proposed by Ghanem and Spanos (1990,

1991b) in the early 90’s to solve boundary value problems in mechanics with stochastic coefficients. The

approach was presented in details in a book by the authors (Ghanem and Spanos, 1991a).

In the original presentation, the input quantities are represented by Gaussian random fields that are

discretized by the Karhunen-Loève (KL) expansion (Eq.(2.66)). The model response, i.e. the vector of

nodal displacements, is expanded onto the polynomial chaos. The solution to the problem is obtained by

a Galerkin procedure in the random dimension.

This SSFEM was applied to various problems including geotechnical problems (Ghanem and Brzkala,

1996), transport in random media (Ghanem and Dham, 1998; Ghanem, 1998), non linear random vibra-

tions (Li and Ghanem, 1998) and heat conduction (Ghanem, 1999c), in which non Gaussian fields were

introduced (see also Ghanem (1999b)). A general framework that summarizes the various developments

can be found in Ghanem (1999a).

In the last five years, a mathematical approach to stochastic elliptic problems has emerged, which com-

plements the original SSFEM approach. Deb et al. (2001); Babuska and Chatzipantelidis (2002); Babuska

et al. (2004); Frauenfelder et al. (2005) give a sound mathematical description of the variational form

of the elliptic stochastic differentential equations and discuss various strategies of resolution and error

estimates, which are outside the scope of this document. The spectral approaches have also benefited

much from advances in computational fluid mechanics, see e.g. Le Mâıtre et al. (2001, 2002); Debusschere

et al. (2003); Reagan et al. (2003) and a recent review by Knio and Le Mâıtre (2006).

The Galerkin approach to solve partial differential equations is now summarized.
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3.2 Deterministic elliptic problem

3.2.1 Problem statement

Let us consider a bounded set B ∈ R
d, d = 1, 2, 3 and a boundary value problem of the form:

div(k(x) · ∇u(x)) + f(x) = 0 ∀x ∈ B

u(x)
Γ0

= 0 ∇u(x)
Γ1

= f̄(x) Γ0 ∪ Γ1 = ∂B
(4.40)

where the input k(x), f̄(x) satisfies sufficient conditions of regularity so that the problem has a unique

solution. The variational form of this problem reads:

Find u ∈ V : a(u, v) = b(v) ∀ v ∈ V (4.41)

where V is a suitable Hilbert space of functions that are zero on Γ0 (e.g. H1
0 (B)) and where the bilinear

(resp. linear) form a(., .) (resp. b(.)) reads:

a(u, v) =

∫

B
∇v(x)T · k(x) · ∇u(x) dx

b(v) =

∫

B
f(x) v(x) dx +

∫

Γ1

f̄(x) v(x) dx

(4.42)

3.2.2 Galerkin method

The Galerkin solution to this problem consists in considering a series of discretized problems that are

posed on subspaces of V. Let VN be such a N -dimensional subspace, e.g. the subspace spanned by

the shape functions associated with a mesh of domain B in the finite element context. The discretized

problem reads:

Find u(N) ∈ VN : a(u(N), v(N)) = b(v(N)) ∀ v(N) ∈ VN (4.43)

A basis of the subspace VN is chosen, say b(x) ≡ {b1(x), . . . , bN (x)}, which allows one to introduce the

coordinates of any function u(N)(x) of VN (resp. any function v(N)(x)) in this basis:

u(N)(x) ≡
N
∑

i=1

ui bi(x) v(N)(x) ≡
N
∑

i=1

vi bi(x) (4.44)

For the sake of simplicity, these coordinates are gathered into a vector U (resp. V ) and the following

notation is used:

u(N)(x) = b(x) ·U v(N)(x) = b(x) · V (4.45)

Substituting for Eqs.(4.44),(4.45) in Eqs.(4.42),(4.43), one gets:

a(u(N), v(N)) = V T

(∫

B
∇b(x)T · k(x) · ∇b(x) dx

)

U ≡ V TKU

b(v) = V T

(∫

B
f(x)bT(x) dx +

∫

Γ1

f̄(x)bT(x) dx

)

≡ V TF

(4.46)

The discretized problem in Eq.(4.43) rewrites:

Find U ∈ R
N : V TKU = V TF ∀V ∈ R

N (4.47)

which leads to the linear system:

KU = F (4.48)

When dealing with elastic mechanical problems, U is the vector of nodal displacements (also called vector

of primary unknowns), K is the stiffness matrix and F is the load vector. This well known formalism is

now extended to address stochastic boundary value problems.
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3.3 Stochastic elliptic problem

3.3.1 Problem statement

Let us now consider an elliptic stochastic boundary value problem, i.e. a partial differential equation

whose coefficients are random fields. The “random” counterpart of Eq.(4.40) reads:

div(k(x, ω) · ∇u(x, ω) + f(x, ω) = 0 almost surely ∀x ∈ B

u(x, ω)
Γ0

= 0 ∇u(x, ω)
Γ1

= f̄(x, ω) almost surely
(4.49)

where k(x, ω), f(x, ω) and f̄(x, ω) are random fields with suitable properties of regularity. Note that

neither the domain of definition B nor the portions Γ0 and Γ1 of its boundary are random in this

formulation (see Clément et al. (2007) for problems with a random geometry).

The variational formulation of the problem leads to the introduction of a suitable functional space for

the solution u(x, ω). The natural tensor structure of the problem leads to select V ⊗ W, where W =

L2 (Ω, F , P) is a reasonable choice. The variational form of the above problem then reads:

Find u ∈ V ⊗W : A(u, v) = B(v) ∀ v ∈ V ⊗W (4.50)

where the bilinear (resp. linear) form A(., .) (resp. B(.)) reads:

A(u, v) = E [a(u, v)] =

∫

Ω

a(u(x, ω), v(x, ω)) dP (ω)

B(v) = E [b(v)] =

∫

Ω

b(v(x, ω)) dP (ω)

(4.51)

3.3.2 Two-step Galerkin method

In order to solve the above problem by a Galerkin approach, suitable subspaces of V⊗W shall be selected.

As in the deterministic finite element analysis, VN ⊂ V may be chosen as the subspace spanned by shape

functions associated with a mesh of domain B.

The Galerkin approximation in the random dimension requires the introduction of finite-dimensional

subspaces WP ⊂ W. In the literature, various approaches have been proposed:

• polynomial chaos bases: this is the original choice in SSFEM (where a Wiener-Hermite chaos was

used), as well in the generalized chaos approach (Xiu and Karniadakis, 2003a,b; Keese and Matthies,

2005; Matthies and Keese, 2005). This corresponds to a spectral representation in the random

dimension;

• bounded support functions such as wavelets (Le Mâıtre et al., 2004a,b) or finite element-like basis

functions (Deb et al., 2001);

• combinations of both types (Wan and Karniadakis, 2005).

In the sequel, we will focus on polynomial chaos representations. For this purpose, it is supposed that the

input random fields in Eq.(4.49) are discretized using a set of M random variables {Xi, i = 1, . . . ,M}
gathered in a random vector Z(ω) of known PDF (e.g. using the Karhunen-Loève expansion, see Chap-

ter 2, Section 4). As shown in Section 2, it is possible to represent any random variable of second order

as an expansion onto a generalized polynomial chaos {Ψα(Z(ω)), α ∈ N
M}, whose basis elements will

be simply denoted by Ψα from now on for the sake of clarity.



3. Galerkin solution schemes 57

Let WP be the subspace of W defined by:

WP = span{Ψα, 0 ≤ |α| ≤ p} , P =

(

M + p

p

)

(4.52)

The Galerkin approximation of the problem defined in Eqs.(4.50),(4.51) reads:

Find u(N,P ) ∈ VN ⊗WP : A(u(N,P ), v(N,P )) = B(v(N,P )) ∀ v(N,P ) ∈ VN ⊗WP (4.53)

Again, a vector notation is introduced to represent any random field u(N,P ) (resp. v(N,P )) by its coordi-

nates onto the tensor product basis {bi(x)⊗Ψα, i = 1, . . . , N , 0 ≤ |α| ≤ p}:
u(N,P )(x, ω) ≡

∑

0≤|α|≤p

b(x) ·Uα Ψα (4.54)

v(N,P )(x, ω) ≡
∑

0≤|α|≤p

b(x) · V α Ψα (4.55)

Gathering the vectors {Uα, 0 ≤ |α| ≤ p} (resp. {V α, 0 ≤ |α| ≤ p}) into a block vector U (resp. V) of

size N × P , the problem in Eq.(4.53) rewrites:

Find U ∈ R
N×P :

∑

0≤|α|≤p

∑

0≤|β|≤p

V T
αE [K(ω)ΨαΨβ]Uβ = V T

αE [F (ω)Ψα] ∀V ∈ R
N×P (4.56)

which reduces to a set of linear equations:
∑

0≤|β|≤p

E [K(ω)ΨαΨβ]Uβ = E [F (ω)Ψα] ∀α : 0 ≤ |α| ≤ p (4.57)

These equations are usually arranged in a unique linear system:

KU = F (4.58)

where F is the block vector whose α-th block is Fα = E [F (ω)Ψα], and K is a block matrix whose

(α,β)-block is Kαβ = E [K(ω)ΨαΨβ].

3.4 Computational issues

The linear system in Eq.(4.58) is of size N × P and usually very sparse, as seen in Figure 4.1 where the

non zero terms of K have been plotted for various order of expansion M of the input random field (resp.

various PC maximal degree p). This sparsity is twofold:

• first, each block matrix Kαβ has the same (sparse) structure as the stiffness matrix associated to

the deterministic problem;

• second, if the stochastic stiffness matrix is itself represented by a spectral representation, say

K(ω) =
∑

0≤|γ|≤pK
KγΨγ , the blocks in K read:

Kαβ =
∑

0≤|γ|≤pK

E [ΨαΨβΨγ ]Kγ (4.59)

in which many spectral products E [ΨαΨβΨγ ] and consequently many blocks Kαβ vanish.

Consequently, due to the large size and sparsity of K, the system in Eq.(4.58) is not solved by direct

resolution techniques. Indeed, the memory requirements and computational cost when assembling this

matrix would be prohibitive. Krylov-type iterative solvers are thus preferred, namely preconditioned

conjugate gradient techniques, see Ghanem and Kruger (1996); Pellissetti and Ghanem (2000); Chung

et al. (2005). The preconditioner is classically taken as a block diagonal matrix corresponding to the

mean stiffness matrix.
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M = 6 ; p = 4

Figure 4.1: Non zero entries in a linear system resulting from the Galerkin solution to an elliptic stochastic

differentiable equation

3.5 Conclusion

The Spectral Stochastic Finite Element Method has been presented as a strategy to solve elliptic stochastic

partial differential equations. A variational form of these equations is given first. Then the problem is

solved by a Galerkin strategy in a tensor product Hilbert space V ⊗ W, where V is the approximation

space in deterministic finite element analysis and W is the space of random variables with finite second

moments.

In the linear case, the original problem reduces to a linear system of size N × P , where N is the number

of degrees of freedom of the discretized deterministic problem, and P is the number of terms in the

polynomial chaos expansion of the solution. This Galerkin strategy has been called “intrusive” in the

sense that it requires a specific implementation for each problem under consideration.

The intrusive approach to solve stochastic finite element problems has focused much of the attention

devoted by the researchers to this topic since the early 90’s (not only for elliptic problems). Indeed:

• it is a natural extension of the classical finite element method “in the random dimension”. Thus

theoretical results on convergence, error estimates, etc. can be proven (Deb et al., 2001; Frauenfelder

et al., 2005);

• adaptive strategies can be developed from well known results in deterministic finite element analysis
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(Le Mâıtre et al., 2004a,b; Wan and Karniadakis, 2005).

On the other hand, various drawbacks of the intrusive approaches have been observed, namely:

• the Galerkin-like discretization of the equations both in the physical and in the random space leads

to a complex system of equations of large size. Although specific solvers that are suited to large

sparse systems have been proposed, the computational time and memory requirements remain an

issue when dealing with complex systems. Note that a generalized spectral decomposition has been

recently proposed by Nouy (2005, 2007), where the terms in the expansion are computed step-by-

step as solutions of generalized eigenvalue problems. This method appears promising for a drastic

reduction of the computational burden.

• the stochastic problem has to be solved in terms of all the primal unknowns e.g. nodal displacements,

temperature, etc. at once. If the analyst is interested only in the random description of a specific

part of the response, he or she should solve the full coupled system anyway.

• if the analyst is interested in derived quantities (such as strain or stress components, stress intensity

factors, etc.), the projection of these quantities onto the PC basis requires additional effort. This

can be a hard task in itself when non linear functions of the primal unknowns are of interest (see

Debusschere et al. (2003) for possible strategies). In practice, non linear problems involving e.g.

plasticity, contact, large strains, etc. have not been given generic solutions so far, although attempts

can be found in Li and Ghanem (1998); Anders and Hori (2001); Acharjee and Zabaras (2006).

• From an industrial point of view, the intrusive approach reveals inappropriate in the sense that it

requires specific developments and subsequent implementation for each new class of problems. This

means that legacy codes cannot be used without deep modifications of the source code.

In order to bypass most of these difficulties, non intrusive solution schemes have emerged in the last five

years. They are now presented from the author’s personal viewpoint.

4 Non intrusive methods

4.1 Introduction

The term non intrusive spectral methods denotes a class of computational schemes that allow the analyst

to compute the polynomial chaos coefficients from a series of calls to the deterministic model, instead of

a Galerkin-type computation. In contrast to that approach, no specific modification of the deterministic

code is necessary (it is used “as is” for selected values of the input vector). Two different approaches

have been recently proposed in the literature, namely projection and regression.

The projection method has been introduced in Ghanem and Ghiocel (1998); Ghiocel and Ghanem (2002)

in the context of seismic soil-structure interaction, Ghanem et al. (2000) for the study of the eigenmodes

of a spatial frame structure and Field et al. (2000); Field (2002) in a non linear shock and vibration

analysis. Le Mâıtre et al. (2002) makes use of the same so-called non intrusive spectral projection (NISP)

to solve a natural convection problem in a square cavity.

The regression method has been introduced by Choi et al. (2004b); Berveiller (2005) based on early

results in ocean engineering by Tatang (1995); Tatang et al. (1997) and Isukapalli (1999) under the name

“probabilistic collocation methods”.

Both approaches are now reviewed in a unified presentation and discussed.
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4.2 Projection methods

4.2.1 Introduction

Let us assume that the random response of a model, say Y =M(X), is represented onto a generalized

PC expansion:

Y =
∑

α∈NM

yα Ψα(X) (4.60)

Due to the orthogonality of the PC expansion, each coefficient is nothing but the projection of the response

Y onto the α-th dimension. Indeed, by premultiplying (4.60) by Ψβ and by taking the expectation, one

gets:

E [Y Ψα(X)] =
∑

β∈NM

yβ E [Ψα(X)Ψβ(X)] (4.61)

where the expectation in the summation is equal to one if α = β and zero otherwise. Hence:

yα = E [Y Ψα(X)] (4.62)

Reminding that the expectation is related to the underlying probability measure PX , one gets:

yα = E [M(X)Ψα(X)] =

∫

DX

M(x)Ψα(x) fX(x) dx (4.63)

The two different expressions for yα in the above equation lead to two classes of projection schemes:

• simulation methods, which correspond to evaluating the expectation as the empirical mean of the

expression within the brackets;

• quadrature methods, which corresponds to evaluating numerically the integral in (4.63) by multidi-

mensional quadrature schemes.

4.2.2 Simulation methods

Monte Carlo simulation This approach is the crudest technique to compute yα = E [M(X)Ψα(X)].

A sample set of input vectors {x(i), i = 1, . . . , n} is drawn according to the distribution fX (see Ap-

pendix A). Then the empirical mean is evaluated:

ŷn
α =

1

n

n
∑

i=1

M(x(i))Ψα(x(i)) (4.64)

From a statistical point of view, the variance of this estimator denoted by Ŷ n
α reads:

Var
[

Ŷ n
α

]

= Var [M(X)Ψα(X)] /n (4.65)

This shows the well-known O(1/
√
n) convergence rate of Monte Carlo simulation. Such a crude MCS

scheme has been originally applied in Field et al. (2000); Ghiocel and Ghanem (2002) in the context of

stochastic finite element analysis.

Latin Hypercube Sampling Latin Hypercube Sampling(LHS) was first proposed by McKay et al.

(1979). It is a stratified sampling technique, which aims at yielding samples that are better distributed

in the sample space than those obtained by MCS.

Suppose a n-sample set is to be drawn and the input random variables are independent. The PDF of

each input variable is divided into n bins (or stratas) having the same weight 1/n. Exactly one sample is
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drawn in each bin and each dimension. Then the samples in each dimension are paired using an algorithm

that allows to have a satisfying space-filling. The convergence of LHS is usually faster than that of crude

MCS. Due to the correlation of the samples, no direct estimation of the accuracy is available though.

When the input variables are correlated, specific modifications of the sampling scheme have to be done.

LHS has been used in the context of stochastic finite element analysis by Le Mâıtre et al. (2002).

Quasi-random numbers Quasi-random numbers, also known as low discrepancy sequences, are deter-

ministic sequences that allow one to fill uniformly a unit hypercube [0, 1]M (Niederreiter, 1992; Morokoff

and Caflisch, 1995). Several types of sequences have been proposed, namely the Halton, Faure and Sobol’

sequences. As an illustration, the latter is briefly described in the sequel.

Let us consider the binary expansion of a natural integer n:

n ≡ (qm · · · q0)2 (4.66)

The n-th term of the Sobol’ sequence reads:

u(n) =

m
∑

i=0

qi
2i+1

(4.67)

Figure 4.2 shows the space-filling process of [0,1] using this technique.

0 0.5 1

N = 3

0 0.5 1

N = 7

0 0.5 1

N = 15

0 0.5 1

N = 31

Figure 4.2: Space-filling process of [0,1] using a unidimensional Sobol’ sequence

The M -dimensional sequences are built by pairing M permutations of the unidimensional sequences.

Figure 4.3 shows the space-filling process of [0,1]2 using a two-dimensional Sobol’ sequence. Figure 4.4

compares the filling obtained by MCS, LHS and the Sobol’ sequence for n = 512 points. The better

uniformity of the latter is obvious in this figure.

The use of quasi-random numbers in the context of stochastic finite element has been originally men-

tionned in Keese (2004). Upon introducing a mapping from DX to [0, 1]M , the integral in Eq.(4.63)

reads:

yα =

∫

[0,1]M
M(T−1(u))Ψα(T−1(u))du (4.68)

where T : X 7→ U is the isoprobabilistic transform that maps each component of X into a uniform

random variable U [0, 1]. Let {u(1), . . . ,u(n)} be a set of n quasi-random numbers. The quasi-Monte
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Figure 4.3: Space-filling process of [0,1]2 using a two-dimensional Sobol’ sequence
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Figure 4.4: Space-filling process of [0,1]2: comparaison of MCS, LHS and QMC sampling schemes (n =

512 points)

Carlo (QMC) estimate of yα is given by:

ŷn,QMC
α =

1

n

n
∑

i=1

M
(

T−1(u(i))
)

Ψα

(

T−1(u(i))
)

(4.69)

The Koksma-Hlawka inequality (Morokoff and Caflisch, 1995) provides an upper bound of the absolute

error:
∣

∣yα − ŷn,QMC
α

∣

∣ ≤ V
(

M(T−1)ψα(T−1)
)

Dn

(

u(1), . . . ,u(n)
)

(4.70)

where V (f) denotes the so-called total variation of a function f, which depends on the mixed derivatives

of this function, and Dn represents the star discrepancy of the quasi-random sample, which measures its

uniformity. The Sobol’ sequence presented above has a star discrepancy Dn which converges at the rate

O(n−1 logM (n)), i.e. faster than MCS.

Conclusion From the experience of the author, it clearly appears that the quasi-random numbers

outperform the classical simulation methods such as MCS and LHS. The different quasi-random sequences

mentioned above (namely the Halton, Faure and Sobol’ sequences) have been used to compute the PCE

coefficients of analytical models in Sudret et al. (2007) and compared. In the average, the Sobol’ sequence

appears more efficient than the other two. The relative efficiency of MCS, LHS and the Sobol’ sequence

has been compared on the example of a truss structure in Blatman et al. (2007a,b).

4.2.3 Quadrature methods

Tensorized quadrature The use of quadrature schemes to compute multidimensional integrals has

been already mentioned in Chapter 3, Section 2.4 in the context of second moment analysis. To elaborate
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on this method, let us first introduce the following notation for the quadrature of a multivariate function

h : R
M 7→ R

Qν(h) ≡ Q(ν1, ... ,νM )(h) ≡
ν1
∑

i1=1

· · ·
νM
∑

iM=1

ωi1 · · ·ωiM
h(xi1 . . . iM ) (4.71)

The application of the latter equation to the integral in Eq.(4.63) leads to:

ŷν
α = Qν(MΨα) (4.72)

where ν = (ν1, . . . , νM ) is a M -uplet containing the order of the quadrature scheme along each dimension

(the notation ŷν
α recalls what type of integration scheme has been used for the estimation of yα).

To select the multidimensional quadrature scheme, the following heuristic arguments can be referred to.

Suppose first that the modelM is polynomial of order p and consider its p-th order PC expansion (which

shall be exact). The integrand in Eq.(4.63) is polynomial of degree less or equal than 2p. In case of a

single input variable (M = 1), a quadrature scheme corresponding to ν = p + 1 would give the exact

result. As an extension, a quadrature scheme ν = (p + 1, . . . , p + 1) is suited to the multivariate case

M > 1.

Consider now a general (i.e. non polynomial) model. When selecting a p-th order PC expansion, it

is believed that the remaining terms in the series are negligible. Thus the quadrature scheme ν =

(p + 1, . . . , p + 1) is usually used again. This scheme requires (p + 1)M evaluations of the model. This

number obviously blows up when M increases: this problem is known as the curse of dimensionality and

shall be solved using alternative quadrature schemes.

Smolyak quadrature scheme Let us first observe that the full tensorized scheme is somehow too

accurate, even for polynomial models M. Indeed, when a p-th degree PCE is considered, the integrand

in Eq.(4.63) is a multivariate polynomial of total degree less than or equal to 2p. In contrast, the

quadrature scheme Qν exactly integrates multivariate polynomials obtained as products of univariate

polynomials up to degree p, i.e. having a total degree of M × p.

An alternative so-called sparse quadrature scheme originally introduced by Smolyak (1963) has been

proposed to solve the curse of dimensionality (Novak and Ritter, 1996; Gerstner and Griebel, 1998).

Using the notation in Eq.(4.71), Smolyak’s formula reads:

QM,l
Smolyak ≡

∑

l≤|k|≤l+M−1

(−1)l+M−|k|+1

(

M − 1

|k| − l

)

Qk (4.73)

It allows to integrate exactly multivariate polynomials of total degree p, which is exactly what is required

in Eq.(4.63).

The use of Smolyak cubature in non intrusive spectral projection has been mentioned by Keese (2004)

and applied by Le Mâıtre et al. (2004a). Recently, the mathematical aspects of the use of sparse grids

(e.g. convergence and error estimators) in stochastic collocation methods have been studied in Babuska

et al. (2007); Xiu (2007).

4.3 Regression methods

4.3.1 Introduction

Linear regression techniques have been used for decades in order to build functional relationships be-

tween variables from which data sets are available (Saporta, 2006). In various domains of engineering,

response surfaces are built from experiences that are carried out according to an experimental design.



64 Chapter 4. Spectral methods

The coefficients of these response surfaces are obtained by regression. Finding an optimal experimental

design has focused much attention in this context (Atkinson and Donev, 1992; Gauchi, 1997; Myers and

Montgomery, 2002).

In the context of uncertainty propagation, the idea of building a surrogate model in the probabilistic space

emerged in the pioneering work by Tatang (1995); Pan et al. (1997); Tatang et al. (1997) who proposed

a probabilistic collocation method. In this work, Gaussian input random variables were used and it was

proposed to use an experimental design based on the roots of the Hermite polynomials, the size of the

latter being exactly that of the set of unknown coefficients.

Due to poor results when using the collocation scheme in large dimensions, Isukapalli (1999) introduced

a stochastic response surface method. In this approach, the size of the experimental design is larger than

the number of unknown coefficients (e.g. n = 2P ) and the points are selected by a rule of thumb.

The application of these ideas in the context of stochastic finite element analysis has been thoroughly

studied in Berveiller (2005), where various experimental designs are investigated. An original overview

of these results is now presented.

4.3.2 Problem statement

The generalized PC expansion in Eq.(4.60) is truncated in practice for computational purpose. The series

expansion can thus be viewed as the sum of a truncated series and a residual:

Y =M(X) =

P−1
∑

j=0

yj Ψj(X) + εP (4.74)

where P =

(

M + p

p

)

if all the multivariate polynomials Ψα(X) such that 0 ≤ |α| ≤ p are considered

(and numbered from 0 to P − 1). Introducing the vector notation:

Y = {y0, . . . , yP−1}T (4.75)

Ψ(x) = {Ψ0(x), . . . ,ΨP−1(x)}T (4.76)

Eq.(4.74) rewrites:

Y = Y
TΨ(X) + εP (4.77)

A natural way of computing the unknown response coefficients Y is to consider Eq.(4.77) as a regression

problem. Minimizing the mean-square error of the residual leads to the following problem:

(P1) : Ŷ = arg min
Y∈RP

E

[

(

M(X)− Y
TΨ(X)

)2
]

(4.78)

4.3.3 Equivalence with the projection method

The solution to this optimization problem is straightforward. Expanding the terms in the brackets in

Eq.(4.78) yields:

Ŷ = arg min
Y∈RP

E
[

M2(X)− 2YTΨ(X) + Y
TΨ(X)Ψ(X)TY

]

(4.79)

The last term reduces to Y
T
Y since E

[

Ψ(X)Ψ(X)T
]

= IP is the identity matrix due to the orthonor-

mality of the PC basis. Hence:

Ŷ = arg min
Y∈RP

E
[

Y
T
Y − 2YTΨ(X) +M2(X)

]

(4.80)
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The expression within the brackets attains its minimum when its derivative with respect to Y is zero,

which yields:

Y = E [M(X)Ψ(X)] (4.81)

This means that the exact solution to the regression problem is the projection result (see Eq.(4.62)), which

proves the theoretical equivalence between the regression and projection approaches. This statement was

originally pointed out in Sudret (2005b) in the context of stochastic finite element analysis.

However, recasting the problem as in Eq.(4.78) paves the path to other resolution techniques. In practice,

the mean-square minimization in that equation is replaced by a computational mean-square minimization

problem defined as follows:

(P1) : Ŷ = arg min
Y∈RP

Ê

[

(

M(X)− Y
TΨ(X)

)2
]

(4.82)

where Ê [] is a deterministic or statistical estimation of the mean-square error evaluated from a set of

realizations of the residual εP .

In the sequel, the set of realizations of the input random vector that is used for this estimation is called

experimental design and denoted by
{

x(1), . . . ,x(n)
}

.

4.3.4 Various discretized regression problems

Random or quasi-random design The expectation in Eq.(4.82) can be evaluated using one of the

simulation techniques presented in Section 4.2.2, namely MCS, LHS, QMC. Suppose n samples of the

input random vector are drawn according to its distribution fX . The minimization problem is approxi-

mated by:

(P2) : Ŷ = arg min
Y∈RP

1

n

n
∑

i=1

[

M(x(i))− Y
TΨ(x(i))

]2

(4.83)

Problem (P2) is nothing but a least-square minimization problem. Introducing the notation M =

{M(x(1)), . . . ,M(x(n))}T and denoting by A the matrix whose entries read:

Aij = Ψj(x
(i)) (4.84)

the solution to (P2) reads:

Ŷ = (ATA)−1AT
M (4.85)

Such an approach has been applied using a LHS experimental design by Choi et al. (2004b,a); Choi et al.

(2006).

Roots of orthogonal polynomials Isukapalli (1999) proposed to build an experimental design based

on the roots of orthogonal polynomials. This idea comes from results on optimal experimental designs in

classical response surface methods using polynomial regressors (Fedorov, 1972; Villadsen and Michelsen,

1978; Gauchi, 1997). Following this idea, Berveiller (2005) studied in details the accuracy of various

schemes in the context of Hermite polynomial chaos. The optimal resulting procedure eventually obtained

is now summarized:

• Suppose a PC expansion of maximal degree p is selected. The roots of the Hermite polynomial of

next order Hep+1 are computed, say {r1, . . . , rp+1}.

• All the possible M -uplets {rk, k = 1, . . . , (p+ 1)M} are built from these roots:

rk = (ri1 , . . . , riM
) 1 ≤ i1 ≤ · · · ≤ iM ≤ p+ 1 (4.86)
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• These M -uplets are sorted according to their increasing norm ‖ r ‖ in ascending order and the n

M -uplets with smallest norm are retained. In case of Hermite chaos, these M -uplets correspond to

the largest values of the joint PDF of the basic random vector ξ.

From a comprehensive parametric study on various problems, Berveiller (2005) shows that n ≈ (M −1)P

is an optimal size for the experimental design, since additional points do not change much the obtained

PCE coefficients. Sudret (2008a) shows that the accuracy of the results is related to the conditioning of

the information matrix ATA (see Eq.(4.85)) and proposes an iterative construction of the latter. Such an

approach has been applied in Berveiller et al. (2004a,b, 2005a, 2006) and recently in Huang et al. (2007)

for problems involving random fields.

Weighted regression The expectation in Eq.(4.78) may be considered as an integral which may be

evaluated by quadrature. Thus the minimization problem:

(P3) : Ŷ = arg min
Y∈RP

Qν

(

[

M(x)− Y
TΨ(x)

]2
)

(4.87)

(P3) can be interpreted as a weighted least-square minimization problem, whose solution reads:

Ŷ = (ATWA)−1WAT
M (4.88)

where A has been defined in Eq.(4.84) and W = diag(ω1, . . . , ωn) is the diagonal matrix containing

the integration weights of the quadrature scheme Qν . This weighted regression scheme could be applied

together with a sparse grid design or full tensorized design.

4.4 Conclusion

The various non intrusive methods presented in this section allow the analyst to compute the PCE

coefficients based on a series of calls to the model functionM. The input vectors for which the model is run

are known in advance. Thus these model evaluations can be easily parallelized over a cluster of processors.

Moreover, the computational machinery may be implemented once and for all, in contrast to the intrusive

Galerkin approach. Any model with uncertain input may be dealt with without any limitation on its

physical content. The knowledge accumulated in legacy codes is thus fully taken advantage of. As already

observed, the non intrusive approaches are of course not limited to finite element models.

Problems involving random fields may be solved using any of the non intrusive methods provided the

input random field(s) have been previously discretized. Any of the discretization methods reviewed

in Chapter 2, Section 4 may be used, meaning that it is not necessary to resort to Karhunen-Loève

expansions.

In contrast to the Galerkin approach, the computational cost does not blow up when the size N of the

response vector increases. Indeed, the computational cost simply increases along with the unit cost of

a deterministic finite element analysis. Note that in case of finite element models, only the response

quantities of interest (e.g. selected nodal displacements, stress components or post-processed quantities

thereof) may be considered. Provided the full reponse vector of each finite element analysis has been

stored in a database, the cost of the PC expansion of an additional response quantity (which would have

been disregarded in a first step) reduces to a matrix-vector product.

When using projection techniques, and assuming that the computational cost of each model evaluation

(i.e. y(i) = M(x(i))) is the main issue, it seems obvious that evaluating a large number of coefficients

at once (i.e. selecting a rather large value of p and associated number of coefficients P ) may be a good

strategy. This is not the case though. Indeed, the accuracy of the estimates of the PC coefficients

deteriorates with the order of the coefficients in the expansion. This may be explained as follows:
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• if a sampling method such as Monte Carlo simulation is used, the variance of the estimator of the

coefficients increases with the order of the coefficient in the expansion. Thus, for a fixed number of

samples, the low order coefficients are better estimated than the higher order ones. The inaccuracy

in the latter may then pollute the post-processed quantities (see next section).

• if a quadrature method of a fixed order is used, the lower order coefficients are again estimated more

accurately than the higher order ones, since they correspond to lower degree polynomial functions.

As a conclusion, the order of expansion should be carefully selected together with the computational

projection scheme.

When regression techniques are considered, the truncation of the series is selected ab initio, which in-

troduces a first potential error. Then an experimental design is built according to this choice. If it is

poorly chosen, the obtained coefficients may be quite far away from their true value, even if the selected

truncated expansion was in principle accurate enough. Consequently, there are two potential sources of

inaccuracy that should be taken care of simultaneously.

In all cases, it is important in the future to develop adaptive strategies that could jointly yield the optimal

PC expansion together with the optimal computational scheme for its evaluation. This work is currently

in progress (Blatman, 2007).

5 Post-processing of the PCE coefficients

The spectral methods described in the previous sections yield an intrinsic representation of the random

response of a model in terms of its polynomial chaos expansion:

Y =

P−1
∑

j=0

yj Ψj(X) (4.89)

For practical interpretation, the coefficients of this expansion should be post-processed to derive quantities

of interest. In this section, the computation of the probability density function of the response and its

statistical moments is successively presented. Then the use of PC expansion in structural reliability and

sensitivity analysis is described.

5.1 Response probability density function

In order to obtain a graphical representation of the response PDF, the series expansion in Eq.(4.89) may

be simulated using MCS. This yields a sample set of response quantities, say {y(i), i = 1, . . . , n}. From

this set, an histogram may be built. Smoother representations may be obtained using kernel smoothing

techniques, see e.g. Wand and Jones (1995).

Broadly speaking, the kernel density approximation of the response PDF is given by:

f̂Y (y) =
1

nhK

n
∑

i=1

K

(

y − y(i)

hK

)

(4.90)

In this expression, K(x) is a suitable positive function called kernel, and hK is the bandwith parameter.

Well-known kernels are the Gaussian kernel (which is the standard normal PDF) and the Epanechnikov

kernel KE(x) = 3
4 (1 − x2)1|x|≤1. The bandwith parameter is selected according to the choice of the

kernel and the sample size n. In the present case, the MC simulation of the PC expansion (which is

analytical and polynomial) is rather inexpensive and usually negligible with respect to the model runs
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that were previously required to obtain the PC coefficients. Thus a large sample may be used for the

kernel approximation, e.g. n = 1, 000−10,000. In case of such large samples, the obtained kernel density

is independent of the choice of the kernel function.

5.2 Statistical moments

The statistical moments could be obtained at any order from the empirical moments of the samples of the

response {y(i), i = 1, . . . , n} mentioned earlier. However, due to the orthogonality of the PC expansion

coefficients, they can be given analytical expressions which avoids the sampling. The mean value and

variance of Y indeed read:

µPC
Y ≡ E [Y ] = y0 (4.91)

σ2,PC
Y ≡ Var [Y ] =

P−1
∑

j=1

y2
j (4.92)

The higher order moments may also be straightforwardly computed. For instance, the skewness and

kurtosis coefficients read:

δPC
Y =

1

σ3,PC
Y

E
[

(Y − y0)3
]

=
1

σ3,PC
Y

P−1
∑

i=1

P−1
∑

j=1

P−1
∑

k=1

dijk yiyjyk (4.93)

κPC
Y =

1

σ4,PC
Y

E
[

(Y − y0)4
]

=
1

σ4,PC
Y

P−1
∑

i=1

P−1
∑

j=1

P−1
∑

k=1

P−1
∑

l=1

dijkl yiyjykyl (4.94)

where dijk = E [Ψi(X)Ψj(X)Ψk(X)] (resp. dijkl = E [Ψi(X)Ψj(X)Ψk(X)Ψl(X)] ) . In case of Hermite

chaos, these coefficients may be computed analytically (see e.g. Sudret et al. (2006)). The set of these so-

called spectral products has a sparse structure, in the sense that many of them are zero. As a consequence,

they could be computed and stored once and for all.

From the author’s experience and the application examples found in the literature, second-order PC

expansion are usually sufficiently accurate to compute the mean and variance of the response, whereas

at least third order expansions should be used to capture properly the higher order moments.

5.3 Reliability analysis

The use of spectral methods for reliability analysis was illustrated for the first time in Sudret and Der

Kiureghian (2002). Since then, many applications have been proposed by the author and colleagues

(Sudret et al., 2003a, 2004; Berveiller et al., 2005a,b) and others (Choi et al., 2004b,a).

The main idea is to approximate first the response quantities that enter the limit state function using a

PC expansion, then to solve the approximate reliability problem. As illustrated in Sudret et al. (2003a),

the PC approach may be extremely efficient for parametric reliability studies.

From the author’s experience, third order expansion should be used in general, although second order

expansion may be sufficiently accurate in specific cases.

5.4 Sensitivity analysis

In this section, the fruitful link between PC expansions and the formalism of Sobol’ indices (Chapter 3,

Section 4.3) is established. This work was originally published in Sudret (2006a, 2008a).
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Let us suppose the model response is represented by a truncated PC expansion:

M(x) ≈MPC(x) =
∑

|α|≤p

yαΨα(x) (4.95)

where the multi-index notation is used, see Eq.(4.15). Let us define by Ii1, ..., is
the set of multi-indices

so that only the indices (i1, . . . , is) are non zero:

Ii1, ..., is
=

{

α :
αk > 0 ∀k = 1, . . . ,M, k ∈ (i1, . . . , is)

αk = 0 ∀k = 1, . . . ,M, k /∈ (i1, . . . , is)

}

(4.96)

Note that Ii corresponds to the polynomials depending only on parameter xi. Using this notation, the

terms in Eq.(4.95) may now be gathered according to the parameters they really depend on:

MPC(x) = y0 +

n
∑

i=1

∑

α∈Ii

yα Ψα(xi) +
∑

1≤i1<i2≤n

∑

α∈Ii1,i2

yα Ψα(xi1 , xi2) + . . .

+
∑

1≤i1<···<is≤n

∑

α∈Ii1,...,is

yα Ψα(xi1 , . . . , xis
) + · · ·+

∑

α∈I1,2...,n

yα Ψα(x1, . . . , xn)

(4.97)

In the above equation, the true dependence of each polynomial basis function to each subset of input

parameters has been given for the sake of clarity. Each term of the form
∑

α∈Ii1,...,is
yα Ψα(xi1 , . . . , xis

)

in the right hand side is a polynomial function depending on all the input parameters (i1, . . . , is) and

only on them. Thus the summands in the Sobol’ decomposition ofM(x) (see Eq.(3.64)) straightforwardly

read:

Mi1...is
(xi1 , . . . , xis

) =
∑

α∈Ii1,...,is

yα Ψα(xi1 , . . . , xis
) (4.98)

Due to the property of uniqueness, it may be concluded that Eq.(4.97) is the Sobol’ decomposition of

MPC(x).

It is now easy to derive sensitivity indices from the above representation. These indices, called polynomial

chaos based Sobol’ indices and denoted by SUi1...is
are defined as:

SUi1...is
=

1

σ2,PC
Y

∑

α∈Ii1,...,is

y2
α =

∑

α∈Ii1,...,is

y2
α

/

∑

0<|α|≤p

y2
α (4.99)

Although the above mathematical presentation is quite a burden, the idea behind is simple: once the

polynomial chaos coefficients are computed, they are simply gathered according to the dependency of

each basis polynomial, square-summed and normalized as shown in Eq.(4.99).

The total PC-based sensitivity indices are also easy to compute:

SUT
j1, ..., jt

=
∑

(i1, ..., is)⊂(j1, ..., jt)

SUi1, ..., is
(4.100)

As the terms in the summation are the PC-based Sobol indices, whose analytical expression has been

given above, the total sensitivity indices may be computed at almost no additional cost.

5.5 Conclusion

The spectral methods provide a representation of the random response in terms of its PCE coefficients

in a specific basis. In this section, it has been shown that the coefficients may be easily post-processed

in order to compute the response PDF and the statistical moments. Reliability and sensitivity analysis

may be equally carried out for free, i.e. at a computational cost which is usually negligible compared to

a single run of the modelM. The various post-processing techniques are sketched in Figure 4.5.
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Figure 4.5: Post-processing of the polynomial chaos expansion of the random response

6 Application examples

6.1 Introduction

In this section various application examples in stochastic finite element analysis are proposed for the

sake of illustration. The first example deals with geotechnical engineering and more specifically with the

reliability of a foundation over an elastic soil mass with respect to a maximal admissible settlement.

Two sub-problems are considered. First the Young’s modulus of the soil layer is supposed to be spatially

variable (Sudret and Der Kiureghian, 2000). Second, the soil mass is made of two homogeneous layers,

whose elastic properties are random and non Gaussian (Berveiller et al., 2006).

The second example deals with an elastic truss structure whose member properties and loading are random

(Blatman et al., 2007a). This quite simple mechanical system allows one to compare comprehensively

the various non intrusive schemes presented in Section 4.

6.2 Geotechnical engineering

6.2.1 Example #1.1: Foundation problem – spatial variability

Description of the deterministic problem Let us consider an elastic soil layer of thickness t lying

on a rigid substratum. A superstructure to be founded on this soil mass is idealized as a uniform pressure

P applied over a length 2B of the free surface (see Figure 4.6). The soil is modeled as an elastic linear

isotropic material. A plane strain analysis is carried out.

Due to the symmetry, half of the structure is modeled by finite elements. Strictly speaking, there is

no symmetry in the system when random fields of material properties are introduced. However, it is

believed that this simplification does not significantly influence the results. The parameters selected for

the deterministic model are listed in Table 4.1.
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A

2B

t
E , ν

Figure 4.6: Example #1.1 – Settlement of a foundation – problem definition

Table 4.1: Example #1.1 – Foundation – Parameters of the deterministic model

Parameter Symbol Value

Soil layer thickness t 30 m

Foundation width 2B 10 m

Applied pressure P 0.2 MPa

Soil Young’s modulus E 50 MPa

Soil Poisson’s ratio ν 0.3

Mesh width L 60 m

A refined mesh was first used to obtain the “exact” maximum displacement under the foundation (point

A in Figure 4.6). Less refined meshes were then tried in order to design a mesh with as few elements as

possible that yielded no more than 1% error in the computed maximum settlement. The mesh displayed

in Figure 4.7-a was eventually chosen. It contains 99 nodes and 80 elements. The maximum settlement

computed with this mesh is equal to 5.42 cm.

a - Mesh b - Deformed shape

Figure 4.7: Example #1.1 – Foundation – Finite element mesh and deformed shape for mean values of

the parameters by a deterministic analysis

Description of the probabilistic data The assessment of the serviceability of the foundation de-

scribed in the above paragraph is now investigated under the assumption that the Young’s modulus of

the soil mass is spatially varying.

The Young’s modulus of the soil is considered to vary only in the vertical direction, so that it is modeled as

a one-dimensional homogeneous random field along the depth z. This is a reasonable model for a layered

soil medium. The field is assumed to be lognormal and homogeneous. Its second-moment properties

are considered to be the mean µE = 50 MPa, the coefficient of variation δE = σE/µE = 0.2. The
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autocorrelation coefficient function of the underlying Gaussian field N(x, ω) is of type A (Eq.(2.59)), i.e.

ρ(z , z′) = exp(−|z − z′|/ℓA), where z is the depth coordinate and ℓA = 30 m is the correlation length.

The underlying Gaussian field N(x, ω) is discretized using the Karhunen-Loève expansion, see Eq.(2.66).

The accuracy of the discretization is measured by the following error estimate:

ε̄ =
1

|B|

∫

B

Var
[

N(x)− N̂(x)
]

Var [N(x)]
dB (4.101)

A relative accuracy in the variance of 12% (resp. 8%, 6%) is obtained when using M = 2 (resp. M = 3, 4)

terms in the KL expansion of N(x). Of course these values are closely related to the parameters defining

the random field, particularly the correlation length ℓA. As ℓA is comparable here to the size of the

domain B, an accurate discretization is obtained using few terms. Many more terms would be required

to get a satisfactory accuracy when ℓA << |B|.

Reliability analysis The limit state function is defined in terms of the maximum settlement uA at

the center of the foundation:

g(Ξ) = umax − uA(Ξ) (4.102)

where umax is an admissible threshold initially set equal to 10 cm and Ξ is the vector of basic random

variables used for the random field discretization.

Table 4.2 reports the results of the reliability analysis carried out either by direct coupling between

the finite element model and the FORM algorithm (column #2), or by the application of FORM after

solving the SFE problem (column #6, for various values of p). Both results have been validated using

importance sampling (columns #3 and #7 respectively). In the direct coupling approach, 1,000 samples

(corresponding to 1,000 deterministic FE runs) were used, leading to a coefficient of variation of the

simulation less than 6%. In the SFE approach, the polynomial chaos expansion of the response is used

for importance sampling around the design point obtained by FORM (i.e. no additional finite element run

is required), and thus 50,000 samples can be used, leading to a coefficient of variation of the simulation

less than 1%.

Table 4.2: Example #1.1 – Foundation – Reliability index β: Influence of the orders of expansion M and

p (umax = 10 cm)

M βFORM
direct

βIS
direct p P βFORM

SFE βIS
SFE

2 3.452 3.433 2 6 3.617 3.613

3 10 3.474 3.467

3 3.447 3.421 2 10 3.606 3.597

3 20 3.461 3.461

4 3.447 3.449 2 15 3.603 3.592

3 35 3.458 3.459

It appears that the solution is not much sensitive to the order of expansion of the input field (when

comparing the results for M = 2 with respect to those obtained for M = 4). This can be easily

understood by the fact that the maximum settlement of the foundation is related to the global (i.e.

homogenized) behaviour of the soil mass. Modeling in a refined manner the spatial variability of the

stiffness of the soil mass by adding terms in the KL expansion does not significantly influence the results.

In contrast, it appears that a PC expansion of third degree (p = 3) is required in order to get a satisfactory

accuracy on the reliability index. Note that the accuracy of FORM in both approaches (i.e. direct

coupling or after SSFEM) is satisfactory since the relative discrepancy with the IS results is less than

1%.
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Parametric study A comprehensive comparison of the two approaches is presented in Sudret and

Der Kiureghian (2000), where the influences of various parameters are investigated. Selected results

are reported in this section. More precisely, the accuracy of the SFE method combined with FORM is

investigated when varying the value of the admissible settlement from 6 to 20 cm, which leads to an

increasing reliability index. A two-term (M = 2) KL expansion of the underlying Gaussian field is used.

The results are reported in Table 4.3. Column #2 shows the values obtained by direct coupling between

FORM and the deterministic finite element model. Column #4 shows the values obtained using FORM

after the SFE solution of the problem using an intrusive approach (IS results are not reported since they

are very close to the FORM results, as in Table 4.2).

Table 4.3: Example #1.1 – Foundation – Influence of the threshold in the limit state function

umax (cm) βdirect p βSFE

2 0.477

6 0.473 3 0.488

4 0.488

2 2.195

8 2.152 3 2.165

4 2.166

2 3.617

10 3.452 3 3.474

4 3.467

2 4.858

12 4.514 3 4.559

4 4.534

2 6.494

15 5.810 3 5.918

4 5.846

2 8.830

20 7.480 3 7.737

4 7.561

The results in Table 4.3 show that the “SFE+FORM” procedure obviously converges to the direct coupling

results when p is increased. It appears that a third-order expansion is accurate enough to predict reliability

indices up to 5, i.e. Pf ≈ 10−7. For larger values of β, a higher order expansion should be used.

Note that a single SFE analysis is carried out to get the reliability indices associated with the various

values of the threshold umax (once p is chosen). In contrast, a FORM analysis has to be restarted for

each value of umax when a direct coupling is used. As a conclusion, if a single value of β (and related

Pf ≈ Φ(−β)) is of interest, the direct coupling using FORM is probably the most efficient method. When

the evolution of β with respect to a threshold is investigated, the “SFE+FORM” approach may become

more appealing.

6.2.2 Example #1.2: Foundation problem – non Gaussian variables

Deterministic problem statement Let us consider now an elastic soil mass made of two layers of

different isotropic linear elastic materials lying on a rigid substratum. A foundation on this soil mass is

modeled by a uniform pressure P1 applied over a length 2B1 = 10 m of the free surface. An additional

load P2 is applied over a length 2B2 = 5 m (Figure 4.8).

Due to the symmetry, half of the structure is modeled by finite elements. The mesh comprises 80 QUAD4

elements as in the previous section. The finite element code used in this analysis is the open source
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Figure 4.8: Example #1.2 – Foundation on a two-layer soil mass

code Code Aster (eDF, R&D Division, 2006). The geometry is considered as deterministic. The elastic

material properties of both layers and the applied loads are modelled by random variables, whose PDF

are specified in Table 4.4. All six random variables are supposed to be independent.

Table 4.4: Example #1.2 – Foundation on a two-layer soil mass – Parameters of the model

Parameter Notation Type of PDF Mean value Coef. of variation

Upper layer soil thickness t1 Deterministic 7.75 m -

Lower layer soil thickness t2 Deterministic 22.25 m -

Upper layer Young’s modulus E1 Lognormal 50 MPa 20 %

Lower layer Young’s modulus E2 Lognormal 100 MPa 20 %

Upper layer Poisson ratio ν1 Uniform 0.3 15 %

Lower layer Poisson ratio ν2 Uniform 0.3 15 %

Load #1 P1 Gamma 0.2 MPa 20 %

Load #2 P2 Weibull 0.4 MPa 20 %

Again the model response under consideration is the maximum vertical displacement at point A, say uA

(figure 4.8), considered as a function of the six input parameters:

uA =M(E1, E2, ν1, ν2, P1, P2) (4.103)

Reliability analysis The serviceability of this foundation on a layered soil mass vis-à-vis an admissible

settlement is studied. Again, two stategies are compared:

• a direct coupling between the finite element model and the probabilistic code PROBAN (Det Norske

Veritas, 2000). The limit state function given in Eq.(4.102) is rewritten in this case as:

g(X) = umax −M(E1, E2, ν1, ν2, P1, P2) (4.104)

where umax is the admissible settlement. The failure probability is computed using FORM analysis

followed by importance sampling. 1,000 samples are used in IS allowing a coefficient of variation of

the simulation less than 5%.

• a SFE analysis using the regression method is carried out, leading to an approximation of the

maximal vertical settlement:

uPC
A =

P−1
∑

j=0

ujΨj(ξ) (4.105)

For this purpose, the six input variables {E1, E2, ν1, ν2, P1, P2} are first transformed into a six-

dimensional standard normal gaussian vector Ξ . Then a third order (p = 3) PC expansion of
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the response is performed which requires the computation of P =

(

6 + 3

3

)

= 84 coefficients. The

following approximate limit state function is then considered:

gPC(X) = umax −
P−1
∑

j=0

uj Ψj(ξ) (4.106)

Then FORM analysis followed by importance sampling is applied (1,000 samples, coefficient of

variation less than 1% for the simulation). Note that in this case, FORM as well as IS are performed

using the analytical limit state function Eq.(4.106). This computation is almost costless compared

to the computation of the PC expansion coefficients {uj}P−1
j=0 in Eq.(4.105) .

Table 4.5 shows the probability of failure obtained by direct coupling and by SFE/regression using various

numbers of points in the experimental design (see Section 4.3.4). Figure 4.9 shows the evolution of the

ratio between the logarithm of the probability of failure (divided by the logarithm of the converged

probability of failure) vs. the number of regression points for several values of the maximum admissible

settlement umax. Accurate results are obtained when using 420 regression points or more for different

values of the failure probability (from 10−1 to 10−4). When taking less than 420 points, results are

inaccurate. When taking more than 420 points, the accuracy is not improved. Thus this number seems

to be the best compromise between accuracy and efficiency. Note that it corresponds to (M−1)P = 5×84

points, as observed in other application examples (Berveiller, 2005).

Table 4.5: Example #1.2 – Foundation on a two-layer soil mass - probability of failure Pf

Threshold Direct Non intrusive SFE/regression approach

umax (cm) Coupling 84 pts 168 pts 336 pts 420 pts 4096 pts

12 3.09.10−1 1.62.10−1 2.71.10−1 3.31.10−1 3.23.10−1 3.32.10−1

15 6.83.10−2 6.77.10−2 6.90.10−2 8.43.10−2 6.73.10−2 6.93.10−2

20 2.13.10−3 - 9.95.10−5 8.22.10−4 2.01.10−3 1.98.10−3

22 4.61.10−4 - 7.47.10−7 1.31.10−4 3.80.10−4 4.24.10−4

Number of FE runs required 84 168 336 420 4096

6.2.3 Complementary applications

Examples in geotechnical engineering have constantly supported the development of spectral methods by

the author and colleagues.

Application example #1.1 was originally addressed in Sudret and Der Kiureghian (2000) and reported in

Sudret (2001); Sudret and Der Kiureghian (2002). It has been recently benchmarked in Sachdeva et al.

(2006). The first application of an intrusive approach in order to solve a reliability problem involving non

Gaussian random variables was presented in Sudret et al. (2003b, 2004). A similar example including the

computation of fragility curves is presented in Sudret et al. (2003a). A comprehensive presentation of the

intrusive computational scheme and various additional application examples can be found in Berveiller

et al. (2006). The regression method was applied to this problem in Sudret et al. (2006). A survey paper

is available in Sudret and Berveiller (2007).

The non intrusive methods were first applied to the study of the convergence of a tunnel submitted to

earth pressure in Berveiller et al. (2004a,b).
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Figure 4.9: Example #1.2: – Foundation on a two-layer soil mass - evolution of the logarithm of the

failure probability divided by the converged value vs. the number of regression points

6.3 Structural mechanics

6.3.1 Deterministic problem statement

Let us consider the simply supported truss structure sketched in Figure 4.10. It is made of 23 elastic

bars, whose Young’s modulus and cross sections are uncertain. The truss is loaded by six verticals loads

P1 − P6.

This quite simple structure allows us to compare the various non intrusive stochastic finite element

methods described in Section 4. Different problems are successively considered, namely the estimation of

probability density function and statistical moments of the midspan vertical displacement, the associated

sensitivity analysis and the reliability of the truss with respect to a maximal admissible displacement.

Ten independent input random variables are considered, whose distribution, mean and standard deviation

are reported in Table 4.6

Table 4.6: Example #2 – Truss structure – Input random variables

Description Name Distribution Mean Standard Deviation

Young’s modulus E1, E2 (Pa) Lognormal 2.10×1011 2.10×1010

Cross section of the horizontal bars A1 (m2) Lognormal 2.0×10−3 2.0×10−4

Cross section of the vertical bars A2 (m2) Lognormal 1.0×10−3 1.0×10−4

Loads P1-P6 (N) Gumbel 5.0×104 7.5×103

Of interest is the midspan deflection v (counted positively downwards). The model of the structure is the

algorithmic (finite element-based) function that yields this quantity for any value of the input paramaters:

v =M(E1, E2, A1, A2, P1, . . . , P6) (4.107)

The different problems are addressed using a second-order (p = 2) Hermite polynomial chaos expansion.
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Figure 4.10: Example #2 – Elastic truss structure with 23 members

In this respect, it is necessary to transform the input random vector X = {E1, E2, A1, A2, P1, . . . , P6}T
into a standardized Gaussian vector:

ξi = F−1
Xi

(

Φ
(

Xi

))

, i = 1, . . . , 10 (4.108)

where FXi
is the CDF of the i-th component of X and Φ is the standard normal CDF. This leads to:

vPC(ξ) =
∑

0≤|α|≤2

vαΨα(ξ) (4.109)

where vα are the unknown coefficients to be computed (there are P =
(

10+2
2

)

= 66 such coefficients).

The non intrusive methods used for this computation and compared in the sequel include:

• three simulation methods, namely Monte Carlo simulation (MCS), Latin Hypercube Sampling

(LHS) and Sobol’ quasi-random sequence (QMC); 10,000 samples are used in each case.

• two quadrature schemes, namely the full tensorized quadrature scheme using 310 = 59051 points

and Smolyak quadrature scheme (266 points);

• regression applied together with random experimental designs (namely MCS, LHS and QMC) and

designs based on the roots of Hermite polynomials respectively. In the latter case, two experimental

designs are successively considered, namely the one proposed by Berveiller (2005) ((M − 1) ×
P=594 points) and the minimal design by Sudret (2008a) (66 points).

Some of the results have been originally presented in Blatman et al. (2007a).

6.3.2 Probability density function of the midspan displacement

The reference solution is obtained by crude Monte Carlo simulation using 1,000,000 runs of the finite

element model. The PCE-based solution corresponds to 1,000,000 samples of the PC expansion. In both

cases, a kernel density representation of the sample set is used (Figure 4.11).

It appears that the PDF obtained from the QMC approach is much closer to the reference solution (i.e.

almost identical) than that derived from the MCS and LHS computation, both in the central part and

in the tails (see the plot with logarithmic scale in Figure 4.11-b).



78 Chapter 4. Spectral methods

−0.14 −0.12 −0.1 −0.08 −0.06 −0.04 −0.02 0

5

10

15

20

25

30

35

Maximal deflection (m)

f V
(v

)
Reference
MCS
LHS
QMC

a - normal scale

−0.14 −0.12 −0.1 −0.08 −0.06 −0.04 −0.02 0
10

−2

10
−1

10
0

10
1

Maximal deflection (m)

f V
(v

)

Reference
MCS
LHS
QMC

b - logarithmic scale

Figure 4.11: Example #2 – Truss example – probability density function of the maximal deflection

obtained by projection methods

−0.14 −0.12 −0.1 −0.08 −0.06 −0.04 −0.02 0

5

10

15

20

25

30

35

Maximal deflection (m)

f V
(v

)

Reference
Smolyak p=2

a - normal scale

−0.14 −0.12 −0.1 −0.08 −0.06 −0.04 −0.02 0
10

−2

10
−1

10
0

10
1

Maximal deflection (m)

f V
(v

)

Reference
Smolyak p=2

b - logarithmic scale

Figure 4.12: Example #2 – Truss structure – probability density function of the maximal deflection

obtained by Smolyak quadrature

The PDF obtained from the PC coefficients computed by Smolyak quadrature (Figure 4.12) is rather

accurate both in the central part and in the tails, with a better accuracy in the upper tail. The same

results hold for the PDF obtained from the PC coefficients computed by regression (Figure 4.13). Note

that there is little difference between the PDF obtained from the minimal experimental design compared

to the design proposed by Berveiller (2005) (also in the tails), whereas the computational cost is divided

by 9.

6.3.3 Statistical moments

The statistical moments of the response v are now considered. Reference results are obtained using

crude Monte Carlo simulation of the problem with 1,000,000 samples to estimate the moments of the

midspan vertical displacement up to order 4. On the other hand, estimates of the PCE coefficients are

post-processed using Eqs.(4.91)-(4.94). The results obtained by projection techniques are reported in
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Figure 4.13: Example #2 – Truss structure – probability density function of the maximal deflection

obtained by regression

Table 4.7 together with the reference values.

Table 4.7: Example #2 – Truss structure – Estimates of the first four statistical moments of the midspan

displacement by projection

Moment Ref. solution Simulation Quadrature

MCS LHS QMC Full Smolyak

Mean value 0.0794 0.0792 0.0794 0.0794 0.0794 0.0794

Std. deviation 0.0111 0.0120 0.0124 0.0112 0.0111 0.0111

Skewness -0.4920 -0.5605 -0.2052 -0.4959 -0.4638 -0.4332

Kurtosis 3.4555 3.9667 3.2944 3.3676 3.2961 3.2535

Number of FE runs 1,000,000 10,000 10,000 10,000 59,049 231

Accurate estimates of the mean value are obtained when using LHS and QMC, whereas the MCS scheme

also yields a rather insignificant relative error ε = 0.3% with respect to the reference value.

However, QMC provides by far the best estimates of the higher order moments, with a relative error of

ε = 0.9% on the standard deviation, ε = 0.8% on the skewness coefficient and ε = 2.5% on the kurtosis

coefficients. The relative errors on these moments are indeed equal to 8.1%, 13.7%, 14.8% respectively

when using MCS. They are equal to 11.7%, 58.3%, 4.7% respectively when using LHS.

Table 4.8: Example #2 – Truss structure – Estimates of the first four statistical moments of the midspan

displacement by regression

Moment Ref. solution Random ED Deterministic ED

MCS LHS QMC Berveiller (2005) Min. design

Mean value 0.0794 0.0793 0.0795 0.0794 0.0794 0.0794

Std. deviation 0.0111 0.0110 0.0110 0.0111 0.0109 0.0108

Skewness 0.4920 0.4672 0.4876 0.4344 0.4824 0.4724

Kurtosis 3.4555 3.2968 3.3329 3.2676 3.3273 3.3031

# FE runs 1,000,000 100 100 100 594 66

The results obtained by regression techniques are reported in Table 4.8 together with the reference values.

Regression with random experimental design (columns #2-4) has been carried out using MCS, LHS and
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QMC samples (100 samples were used in each case). Regression with a design based on roots of the

Hermite polynomials has been also carried out. Column #5 corresponds to the design proposed in

Berveiller (2005). Column #6 corresponds to a “minimal design” as presented in Sudret (2008a). It can

be observed that all the designs lead to accurate predictions of mean and standard deviation. However,

the designs based on the roots of the Hermite polynomials give slightly better results for the skewness

and kurtosis coefficients. It is not clear from this example whether one of the random designs is more

efficient than the others.

6.3.4 Sensitivity analysis

Sensivitity analysis of the midspan vertical displacement is now carried out. The total Sobol’ indices are

considered. The reference values are obtained by Monte Carlo simulation using n = 500, 000 samples

for each index. This leads to perform n(M + 1) = 5, 500, 000 deterministic finite element runs. These

reference results and the results obtained by projection methods are reported in Table 4.9.

Table 4.9: Example #2 – Truss structure – Total Sobol’ indices obtained by projection

Variable Ref. solution Simulation Quadrature

MCS LHS QMC Full Smolyak

A1 0.388 0.320 0.344 0.366 0.371 0.372

E1 0.367 0.356 0.331 0.373 0.371 0.372

P3 0.075 0.067 0.095 0.077 0.077 0.077

P4 0.079 0.124 0.080 0.077 0.077 0.077

P5 0.035 0.086 0.068 0.046 0.037 0.037

P2 0.031 0.079 0.067 0.039 0.037 0.037

A2 0.014 0.074 0.052 0.014 0.013 0.013

E2 0.010 0.088 0.115 0.013 0.013 0.013

P6 0.005 0.067 0.013 0.014 0.005 0.005

P1 0.004 0.037 0.063 0.005 0.005 0.005

# FE runs 5,500,000 10,000 59,049 231

It is observed from the results in Table 4.9 that the variability of the deflection v is mainly due to the

variables E1 and A1, then E2 and A2. This makes sense from a physical point of view since the properties

of the horizontal bars are more influential on the midspan vertical displacement than the oblique ones.

It can be also observed that the Sobol’ indices associated with E1 and A1 (resp. E2 and A2) are similar.

This is due to the fact that these variables have the same type of PDF and same coefficient of variation,

and that the displacement v only depends on them through the products E1A1 and E2A2.

Strictly speaking, an exact symmetry should be observed in the reference results (i.e. STA1
= STE1

and

STA2
= STE2

). Note that the Sobol’ indices should also reflect the symmetry of the problem, giving

similar importances to the loads that are symmetrically applied (e.g. P3 and P4). Moreover, greater

sensitivity indices are logically attributed to the forces that are close to the midspan than those located

at the ends.

Considering first the PC simulation results, it is worth emphasizing that the symmetry properties that are

commented above are not exactly recovered. The QMC results appear more accurate than those obtained

by MCS and LHS. In contrast, very accurate results perfectly reflecting the symmetries mentioned above

are obtained using either of the quadrature schemes.

The total Sobol’ indices obtained from regression-based PC coefficients are reported in Table 4.10. Again

the results obtained from deterministic experimental designs reflect the expected symmetries while those

obtained from random designs do not. The minimum design in column #7 provides rather accurate

results using only 66 model runs.
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Table 4.10: Example #2 – Truss structure – Total Sobol’ indices obtained by regression

Variable Ref. solution Random ED Deterministic ED

MCS LHS QMC Berveiller (2005) Min. design

A1 0.388 0.372 0.371 0.373 0.370 0.367

E1 0.367 0.375 0.368 0.369 0.368 0.367

P3 0.075 0.074 0.079 0.078 0.079 0.080

P4 0.079 0.077 0.077 0.077 0.079 0.080

P5 0.035 0.039 0.041 0.036 0.038 0.039

P2 0.031 0.036 0.035 0.037 0.038 0.039

A2 0.014 0.013 0.017 0.014 0.013 0.012

E2 0.010 0.014 0.014 0.014 0.013 0.012

P6 0.005 0.007 0.007 0.008 0.005 0.005

P1 0.004 0.014 0.005 0.007 0.005 0.005

# FE runs 10,000,000 100 100 100 594 66

6.3.5 Reliability analysis

The serviceability of the structure with respect to an admissible maximal deflection is studied. The

associated limit state function reads:

g(x) = vmax − |v(x)| ≤ 0 , vmax = 0.11m (4.110)

The reference value of the probability of failure has been obtained by crude Monte Carlo simulation:

PMCS
f =

Nfail

N
(4.111)

where N = 1, 000, 000 samples and Nfail is the number of samples corresponding to a negative value of

the limit state function in Eq.(4.110). The result is PMCS
f = 8.7 · 10−3, and the coefficient of variation of

the underlying estimator is 1.1%. The corresponding reliability index is given by βMCS ≡ −Φ−1(PMCS
f ) =

2.378.

The reliability analysis is then performed using the PC expansion of the maximal vertical displacement

obtained by various non intrusive methods. The associated limit state function reads:

gPC(x(ξ)) = vmax − |vPC(ξ)| (4.112)

The probability of failure is then computed from Eq.(4.112) (which is a polynomial function almost

costless to evaluate) using 1,000,000 Monte Carlo samples.

Table 4.11: Example #2 – Truss structure – Estimates of the probability of failure and the reliability

index obtained by projection

Reference MCS LHS QMC Smolyak

Number of FE runs 1,000,000 10,000 10,000 10,000 231

Pf 8.70 · 10−3 1.51 · 10−2 1.12 · 10−2 9.06 · 10−3 7.63 · 10−3

(CV = 1.1%)

β 2.378 2.167 2.284 2.363 2.426

Relative error on β - 8.8% 3.9% 0.8% 2.0%

Results obtained by projection methods are reported in Table 4.11. QMC provides the most accurate

estimate with a relative error of 0.8% on β, whereas relative errors of 8.8% and 3.8% are respectively

associated to MCS and LHS. The Smolyak quadrature scheme provides a 2% accuracy using only 231 runs
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of the finite element model. This method appears to be the best compromise between efficiency and

accuracy in this case.

Finally, a parametric study is carried out to assess the accuracy of the QMC and Smolyak estimates

of Pf and β when the threshold vmax is varied. The QMC estimates are obtained using N = 10, 000

samples. Results are reported in Table 4.12 together with the reference values. Due to the magnitude

of the probabilities of failure, the latter have been obtained by applying FORM followed by importance

sampling to the original finite element model.

Table 4.12: Example #2 – Truss structure – Reliability results obtained by projection (parametric study)

using p = 2

Threshold (cm) Ref. solution QMC Simulation Smolyak Quadrature

Pf β Pf β Pf β

10 4.31 10−2 1.715 4.40 10−2 1.706 4.07 10−2 1.730

11 8.70 10−3 2.378 9.06 10−3 2.363 7.63 10−3 2.426

12 1.50 10−3 2.967 1.42 10−3 2.983 1.06 10−3 3.074

14 3.49 10−5 3.977 2.15 10−5 4.091 1.04 10−5 4.256

16 6.03 10−7 4.855 1.84 10−7 5.085 5.16 10−8 5.321

As mentioned earlier, the PC expansion of the response is less accurate in the far tail of the response

PDF. Thus the relative error increases together with the reliability index β, i.e. when the threshold value

increases. This indicates that a second order PC expansion is not sufficiently accurate to describe the far

tails of the response PDF.

Table 4.13: Example #2 – Truss structure – Reliability results obtained by Smolyak projection (para-

metric study) using a third order polynomial chaos expansion (p = 3)

Threshold (cm) Ref. solution Smolyak Quadrature

Pf β Pf β

10 4.31 10−2 1.715 4.29 10−2 1.718

11 8.70 10−3 2.378 8.70 10−3 2.377

12 1.50 10−3 2.967 1.50 10−3 2.974

14 3.49 10−5 3.977 2.83 10−5 4.026

16 6.03 10−7 4.855 4.01 10−7 4.935

This statement is confirmed by the results in Table 4.13, where a third order (p = 3) PC expansion is con-

sidered. The PC coefficients have been computed by the Smolyak quadrature scheme using 1771 points.

This leads to a 2%-accuracy on the reliability index for values ranging from 1 to 5.

6.3.6 Conclusion

The simple truss structure studied in this section has allowed us to benchmark the various non intrusive

methods for different problems ranging from the representation of the response PDF, the computation of

moments and the hierarchization of input random variables to reliability analysis.

From these results, and other benchmark problems investigated elsewere (Blatman, 2007), the following

conclusions may be drawn:

• when dealing with moment and sensitivity analysis, second order PC expansions usually provide

sufficiently accurate results. When dealing with reliability analysis, third order PC expansions may

be required, in particular when small probabilities of failure are sought;
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• the most efficient projection/simulation method is QMC, i.e. the method related to the use of Sobol’

quasi-random sequences. It should be prefered to MCS and LHS. Note that parametric studies with

respect to the number of samples have shown that convergence is attained from 1,000 QMC samples

in the case of the truss structure, whereas it is not attained for 10,000 MCS or LHS samples (Blatman

et al., 2007a);

• Smolyak quadrature provide accurate results at a relative low cost when the number of variable is

small, say less than 20.

• Regression techniques also provide accurate results provided the size of the experimental design is

large enough compared to the number of unknown coefficients. The minimal experimental design

proposed in Sudret (2008a) provides rather accurate results at a low cost (66 finite element runs

in the present example). However, the size of this design still increases much with the number of

input random variables. Thus random designs may be more efficient for large size problems.

7 Conclusion

In this chapter, spectral methods that have emerged in the early 90’s have been reviewed. Two classes of

methods respectively called the Galerkin (i.e. intrusive) and non intrusive approach, have been presented.

Emphasis has been put on the second class to which the author specifically contributed.

The appealing characteristics of the spectral methods lie in the fact that any random response quantity

may be represented by a set of coefficients in a suitable basis, which contains the complete probabilistic

information. The non intrusive methods allow the analyst to compute these coefficients by a series of

runs of the model at hand, which may be launched in a fully parallel computational environment. The

post-processing of the result is shown to be straightforward, whatever the information of interest (e.g.

moment, reliability or sensitivity analysis).

The spectral methods may be considered as a breakthrough in probabilistic engineering mechanics. It is

the belief of the author that they will become an everyday tool of the engineer in the near future, exactly as

finite element analysis pioneered in the 60’s is nowadays inescapable in every industrial context. The non

intrusive methods appear most interesting since they provide generic tools that can be applied together

with any deterministic models and legacy codes. Note that the author has recently contributed to the

spreading of these methods in electromagnetism (Gaignaire et al., 2006a,b,c, 2007a,b).

The stochastic response surfaces that are eventually obtained from the spectral methods are a particular

meta-model in the probabilistic space. In this respect, the polynomial chaos may be outperformed by

other approaches that have proven efficient in functional approximation. The wavelets used by Le Mâıtre

et al. (2004a,b) seem to be suitable to problems with discontinuities. More generally, the kriging methods

(Sacks et al., 1989), the support vector regression (Schölkopf and Smola, 2002; Smola and Schölkopf,

2006) and the use of reproducing kernel Hilbert spaces (Vazquez, 2005) constitute promising alternatives

to polynomial chaos expansions in the context of uncertainty propagation, which are being investigated

in Blatman (2007).





Chapter 5

Bayesian updating methods and

stochastic inverse problems

1 Introduction

The construction of a probabilistic model for the input parameters of a mathematical model that is

consistent with the available data is a key step in probabilistic engineering mechanics. Several methods

including classical and Bayesian statistics have been reviewed in Chapter 2, Section 3. They have been

called “direct” methods since they rely upon the existence of sample sets of input parameters.

In real applications though, it may happen that no data is available for some input parameters, e.g.

when the cost of data acquisition is too important or when these parameters are not directly measurable

(e.g. parameters of a complex constitutive law). In contrast, data related to the model output (e.g.

displacements, strains, temperature, etc.) may be easily collected in these situations. Thus specific so

called inverse methods have to be devised so as to incorporate this data into the general framework of

uncertainty propagation described in Chapter 1.

Two classes of problems are considered in this chapter, for which specific methods are proposed that

allow the analyst to deal with the data at hand.

1.1 Bayesian updating techniques for real systems

When a real or existing system (as opposed to designed systems, see the discussion in Chapter 1, Sec-

tion 2.3) is monitored in time, response quantities are measured, which can be compared to the model

predictions. Due to model uncertainty and measurement error, the two quantities usually do not exactly

match.

The measurement data may be used in two ways:

• The analyst may be mainly interested in improving the model predictions. In this case, he or she

can resort to methods that update the model response by incorporating the monitoring data. These

techniques have been much developed in structural reliability analysis (see e.g. Madsen (1987),

Ditlevsen and Madsen (1996, Chap. 13)). They correspond to computing the probability of failure

conditionally to the observations.
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• The analyst may be interested in improving the knowledge on the input parameters of the model of

the real system, e.g. in order to use this information in the design of similar systems. In this case,

the probabilistic description of the input parameters is updated conditionally to the observations.

Note that the methods developed by Tarantola (1987, 2005), which have inspired some of the

developments presented later on, belong to this category.

Bayesian statistics is the natural tool to incorporate the measurement data into the computational

schemes in both situations. Applications of these techniques are encountered in the assessment of real

structures that are monitored all along their life time, such as:

• civil engineering structures for which displacements and strains are regularly measured, e.g. the

maximal deflection of a bridge span, the delayed strains of a concrete containment vessel of a nuclear

powerplant, the downwards displacement of the crest of a concrete dam, etc.;

• damaging structures, for which some indicator is monitored through regular inspections, e.g. the

length of cracks in steel structures (pipes, offshore structures, etc.), the depth of concrete carbona-

tion in concrete structures, the corrosion depth in rebars, etc.

The traditional approach to the reliability analysis of existing systems is described in Section 2. An

original algorithm that provides updated confidence intervals on the model predictions is more specifi-

cally introduced. The updating of the input parameters describing the real system is then presented in

Section 3, where Markov chain Monte Carlo simulation is introduced.

Note that the techniques of data assimilation broadly used in ocean engineering (Bennett, 1992), me-

teorology (Talagrand, 1997) and atmospheric pollution (Sportisse, 2004; Bocquet, 2006) are applied to

solve similar, although different types of problems: a dynamic real system is considered for which it is

not possible to determine the initial conditions of the associated model. Thus a probabilistic framework

is used in order to model the discrepancy between predictions and observations at each time instant and

update the input accordingly. Techniques such as Kalman filters and their extensions are used for this

purpose. Attempts to use these techniques in civil engineering may be found in Ching et al. (2006a,b).

1.2 Stochastic inverse methods

When the analyst wants to characterize the aleatoric uncertainty of some physical parameter which is an

input variable of a system model, and for which no direct measuring is possible, he or she has to resort

to stochastic inverse methods.

Precisely, a set of real systems that derive from a unique designed system is considered (e.g. a set of iden-

tical testing samples used to characterize some material property). These real systems are consequently

represented by the same mathematical model. The scattering observed in measuring some response quan-

tity on all of these systems mainly reflects the aleatoric uncertainty in the input parameters, provided the

model is correct and the measurement uncertainty is negligible (both sources of additional uncertainty

may be however present and should be taken care of in a consistent way). Original methods are proposed

in Section 4 to deal with these so-called stochastic inverse problems.

1.3 Measurement uncertainty and model error

The various methods presented in the following sections make assumptions on the accuracy of both model

predictions and measurement procedures. Before proceeding, it is important to clarify what is meant by

measurement uncertainty and model error.
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1.3.1 Measurement uncertainty

Let us consider a real system and a supposedly perfect model of its physical behaviour y =M(x). Let

ỹ be the true value of the model response, i.e. the value that would be obtained from infinitely accurate

measurement devices. Let x̃ be the corresponding true value of the input parameters. As the model is

supposed to be perfect, the following relationship holds:

ỹ =M(x̃) (5.1)

In practice, the measured response yobs may differ from the true value of the response:

yobs = ỹ + e =M(x̃) + e (5.2)

It is common practice to consider that the measurement error e is a realization of a Gaussian random

vector E with zero mean (if the measurements are unbiased) and covariance matrix Cmeas, the latter

being known from the calibration of the measurement devices. When considering now that the true value

of the input parameters x̃ is a particular realization of the input random vector X, Eq.(5.2) simply states

that the conditional distribution of the measured response Y obs reads:

Y obs|X = x̃ ∼ N (M(x̃);Cmeas) (5.3)

which rewrites as follows in terms of conditional probability density function:

fY obs|X(y|X = x) = (2π)−N/2(detCmeas)
−1/2 exp

[

−1

2
(y −M(x))T ·C−1

meas · (y −M(x))

]

(5.4)

In this equation N is the size of the response vector y. This expression will be taken advantage of in the

sequel. Note that the measurement error E is in nature independent of X.

1.3.2 Model error

As already observed in Chapter 1, models are abstract representations of real systems that always simplify

the complexity of the underlying physics. Even when there is no measurement uncertainty (or when it

is negligible), there may be some discrepancy between the predicted and the observed values in most

situations. This is called model error in the sequel. Note that model error has been disregarded in the

first four chapters of this thesis: a perfect model was assumed since the interest was in the probabilistic

modelling of the input uncertainty and its subsequent propagation. However, when dealing with inverse

problems, this assumption becomes too restrictive.

Experimental model calibration When considering a model y = M(x) of a physical system, the

model uncertainty may be of two kinds, as discussed by Gardoni (2002); Gardoni et al. (2002):

• there may be some error in the form of the model, e.g. a linear model is proposed whereas the

actual system response depends non linearly on the input. The same type of error occurs when

the model at hand is deliberately biased in order to be conservative, such as simplified models of

structural capacity codified in standards;

• there may be missing variables that have been neglected (for the sake of parcimony in the model)

or that are not even known (i.e. hidden variables).

Consequently, the true response of a real system may be cast as:

ỹ =M(x) + γ(x,θγ) + e (5.5)



88 Chapter 5. Bayesian updating methods and stochastic inverse problems

In this expression, γ(x,θγ) denotes a function that models the bias observed between predicted and true

responses and e represents the influence of the missing variables.

Gardoni (2002) proposes to represent the bias correction term γ(x,θγ) by explanatory functions θl
γ hl(x)

depending on a set of parameters θγ :

γ(x,θγ) ≡
nγ
∑

l=1

θl
γ hl(x) (5.6)

The explanatory functions are chosen by the analyst with respect to physical considerations. The residual

error is modelled by a centered Gaussian distribution, e.g. with variance σ2
e in the scalar case. Using a

set of experimental data obtained for prescribed values of the input parameters, one is able to estimate

θγ as well as the residual variance error. The latter may be eventually used to compare various bias

correction terms with each other and select the best model accordingly.

This approach is similar to the experimental model calibration presented in Ditlevsen and Madsen (1996,

Chap. 11). It basically assumes that the observation data is obtained in a controlled environment, i.e.

that the values of the input corresponding to each observation are known. Such approaches cannot be

applied to the stochastic inverse problems addressed in this chapter, since the realizations of the input

vectors are supposed not to be known in the present case.

Proposed formulation of the model error From the above paragraph, it is intuitively clear that

the experimental model calibration and the stochastic inverse problem are different in nature and that

they cannot be solved simultaneously. As this chapter focuses on the latter problem, the following

representation of model error will be retained in the sequel.

• the model at hand is considered as unbiased;

• the model error due to missing variables and/or inexact model form is taken into account exactly as

the measurement uncertainty, i.e. the discrepancy between the model response and the observation

vector is supposed to be a realization e of a random vector E:

yobs =M(x̃) + e (5.7)

• it is further assumed that the conditional distribution of the model error is Gaussian, which leads

to the following expression similar to Eq.(5.3):

Y obs|X = x̃ ∼ N (M(x̃);Cmod) (5.8)

where Cmod is the covariance matrix of the model error.

1.3.3 Conclusion

In the context of stochastic inverse problems developed in this chapter, model uncertainty cannot be

calibrated independently from measurement uncertainty. Indeed, the realizations of the input parameters

corresponding to a set of observations Yobs are not known, since the very scattering of the input vector

is to be infered from Yobs.

In practice, a single error term called measurement/model error is introduced in the analysis. Each

observation yobs is considered as a realization of the (random) observation vector Y obs whose conditional

joint PDF is assigned:

Y obs|X = x ∼ N (M(x);Cobs) (5.9)
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where Cobs is the covariance matrix of the measurement/model error. As already observed by Taran-

tola (2005, Chap. 1) using a slightly different formulation, if both the measurement uncertainty and

model error are additive and Gaussian (with respective covariance matrix Cmeas and Cmod) then the

measurement/model error is Gaussian with covariance matrix

Cobs = Cmeas + Cmod (5.10)

Remark It is worth emphasizing that all the developments presented in this chapter remain valid if a

non Gaussian distribution is assumed in Eq.(5.9).

2 Bayesian updating of model response

2.1 Introduction

The large-scale structures encountered in civil engineering (e.g. bridges, dams, etc.), nuclear engineer-

ing (e.g. concrete containment vessels, reactor vessels, etc.) or offshore engineering (e.g. steel jacket

structures) are designed so as to fulfill some service requirements for a prescribed lifetime. Often the

models used to design such components or structures are elementary (e.g. elastic models) in order to

comply with the design rules codified in standards. Moreover, these models are usually intended to be

conservative, i.e. they are supposed to make the system work “on the safe side”.

Due to the uniqueness of such complex systems, monitoring devices are usually installed during the

construction so as to allow the manager of the facility to check that the behaviour of the system is

satisfactory all along its service life. The monitoring data is often used per se and scarcely confronted to

the structural models that were used at the design stage1.

In the context of structural reliability, methods have been proposed back in the mid 80’s to update the

probability of failure of a system from monitoring data (Madsen (1987). Applications of such Bayesian

updating schemes can be found in fatigue crack growth (Zhao and Haldar, 1996; Zhang and Mahadevan,

2000; Baker and Stanley, 2002; Ayala-Uraga and Moan, 2002), fracture mechanics of offshore tubular

joints (Rajansankar et al., 2003), modal analysis (López de Lacalle et al., 1996) or chloride ingress in

concrete bridges (Rafiq et al., 2004). In all these applications, a Bayesian framework is used in order to

update probabilities of failure by incorporating destructive or non destructive inspection data.

From a practical point of view, the analyst may be more interested in updating model predictions though.

In a probabilistic context, this corresponds to computing the probability density function of response

quantities conditionally to the monitoring data. This problem is closely related to that of computing

updated probabilities of failure.

The traditional Bayesian updating of a probability of failure is first recalled. Then the problem of

computing quantiles of response quantities is cast as an inverse reliability problem. Finally an original

algorithm to compute updated quantiles is proposed. This method was originally presented in Sudret

et al. (2006).

2.2 Updating probabilities of failure

Let us consider a scalar time-dependent model of a system y =M(x, t) and let us assume that the input

variables are modelled by a random vector X with joint PDF fX(x)2. Let us suppose that the reliability

1There may be pratical reasons for this: the owner of the facility has not always access to the detailed design of the

system he manages, since this information may remain the property of the consultancy firms that carried out the design.
2In this paragraph, the model response is supposed to be scalar for the sake of simplicity in the notation. A generalization

to vector models is however straightforward.
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of the system with respect to some failure criterion is of interest, where the time-dependent limit state

function reads:

g(X, t) ≡ g̃(X,M(X, t), t) (5.11)

The point-in-time probability of failure at time instant t is defined by3:

Pf (t) = P (g(X, t) ≤ 0) (5.12)

Let us suppose now that measurements of the model response are carried out at various time instants

tj , j = 1, . . . , nobs:

Yobs = {y(j)
obs, j = 1, . . . , nobs} (5.13)

Due to measurement uncertainty, there is some discrepancy between the j-th observation and the model

prediction at t = tj (see Eq.(5.2) in the scalar case):

ej = y
(j)
obs −M(x̃, tj) (5.14)

where x̃ is the best estimate value of the input parameters used in the prediction. According to the

discussion in Section 1.3, it is further assumed that {ej , j = 1, . . . , nobs} are realizations of independent

normal variables Ej of variance σ2
j . Following Ditlevsen and Madsen (1996, Chap. 13), one defines the

j-th measurement event by {Hj = 0}, where Hj reads:

Hj = y
(j)
obs + Ej −M(X, tj) (5.15)

The updated probability of failure is defined as the probability that the limit state function takes negative

values conditionally to the measurement events:

P upd
f (t) ≡ P



g(X, t) ≤ 0 |
nobs
⋂

j=1

{Hj = 0}



 (5.16)

Since the conditioning events {Hj = 0} have a zero probability of occurrence, the updated probability of

failure has to be more precisely defined for mathematical well-posedness, namely:

P upd
f (t) ≡ lim

θ→0+

P (g(X, t) ≤ 0 ∩ {−θ ≤ H1 ≤ 0} ∩ · · · ∩ {−θ ≤ Hnobs
≤ 0})

P





nobs
⋂

j=1

{−θ ≤ Hj ≤ 0}





(5.17)

In the context of first order reliability analysis, the reliability index associated with the above probability

of failure reads:

βupd(t) =
β0(t)−RT

0 ·R · β
√

1−
(

RT
0 ·R ·R0

)2
(5.18)

where β0(t) is the unconditional reliability index associated with {g(X, t) ≤ 0} at time t, β is the vector

of the reliability indices associated to the events {{Hj ≤ 0}, j = 1, . . . , nobs}, R is the matrix whose

entries read Rij = αi · αj and R0 is a vector such that R0,j = α0 · αj . In the latter equations, the

α-vectors correspond to the usual unit normal vector to the limit state surface at the design point (see

Eq.(3.49)), the subscript “0” referring to the limit state function {g(X, t) ≤ 0}, and the subscript j

referring to the limit states {{Hj ≤ 0}, j = 1, . . . , nobs}.

3A comprehensive introduction to time-variant reliability problems is given in Chapter 6.
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2.3 Computation of response quantiles by inverse FORM analysis

As mentioned in the introduction, the analyst may want to compute confidence intervals (i.e. quantiles) of

the time-dependent response for a robust prediction of the system behaviour. Theoretically speaking, the

methods presented in Chapter 3 and 4 may be used for this purpose. However, these methods do not allow

one to include easily monitoring data. In contrast, the Bayesian updating techniques straigthforwardly

apply in the context of reliability analysis, as shown in the above paragraph. Thus it appears interesting

to transform the problem of computing response quantiles into reliability problems.

Accordingly, let us consider the evolution in time of the yet-to-be-determined response PDF fY (y, t) of

Y (t), and more precisely α-quantiles of the latter, which are denoted by yα(t). In practice, one is often

interested in establishing a 95% confidence interval. This means that the 2.5% and 97.5% quantiles are

of interest in this particular case. Introducing the response CDF:

FY (y, t) = P (Y (t) ≤ y) (5.19)

the α-quantiles of the response can be obtained as the solution of the following problem:

Find yα(t) : FY (yα(t), t) = α (5.20)

The above equation is now interpreted as an inverse reliability problem. Generally speaking, suppose that

a limit state function g(X, θ) depends on a parameter θ and suppose that a target probability of failure

P c
f is prescribed. The inverse reliability problem reads:

Find θ : P (g(X, θ) ≤ 0) = P c
f (5.21)

In the context of first order reliability analysis, a target reliability index βc is prescribed and Eq.(5.21)

is recast as:

Find θ : PFORM (g(X, θ) ≤ 0) = Φ(−βc) (5.22)

where PFORM (.) means that the probability of failure is computing using FORM analysis. Various algo-

rithms have been proposed to carry out this so-called inverse FORM analysis, see Der Kiureghian et al.

(1994) and more recently Li and Foschi (1998); Minguez et al. (2005).

Combining Eqs.(5.19),(5.20),(5.22), the α-quantiles of the response quantity may be obtained by appling

the inverse FORM algorithm using an appropriate limit state function and a target reliability index

βc = −Φ−1(α). More precisely, Eq.(5.20) is recast as:

Find yα(t) : PFORM (M(X, t)− yα(t) ≤ 0) = α (5.23)

As FORM analysis is all the more accurate since the obtained probability of failure is small, Eq.(5.23)

should be used for lower quantiles, e.g. 2.5%. For upper quantiles (e.g. α = 97.5%), the opposite limit

state function should be preferred, together with a target reliability index βc = Φ−1(1− α).

2.4 Computation of updated response quantiles by inverse FORM analysis

The Bayesian updating formulæ Eqs.(5.17)-(5.18) are now combined with the inverse FORM method to

compute updated quantiles of the response, which are denoted by yupd
α (t). The “updated” counterpart of

Eq.(5.20) reads:

Find yupd
α (t) : F upd

Y (yupd
α (t), t) = α (5.24)
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where the function in the righthand side of Eq.(5.24) reads:

F upd
Y (y, t) ≡ P



M(X, t)− y ≤ 0 |
nobs
⋂

j=1

{Hj = 0}





≡ lim
θ→0+

P (M(X, t)− y ≤ 0 ∩ {−θ ≤ H1 ≤ 0} ∩ · · · ∩ {−θ ≤ Hnobs
≤ 0})

P





nobs
⋂

j=1

{−θ ≤ Hj ≤ 0}





(5.25)

The problem in Eq.(5.24) may be solved by adapting the inverse FORM algorithm proposed by Der

Kiureghian et al. (1994). This corresponds to solving the “updated” counterpart of Eq.(5.23):

Find yupd
α (t) : PFORM

(

M(X, t)− yupd
α (t) ≤ 0 | H1 = 0 ∩ . . . ∩ HN = 0

)

= α (5.26)

At each time instant, the inverse FORM algorithm is applied together with the limit state{g(X, t, yupd
α (t))

≡ M(X, t) − yupd
α (t) ≤ 0}, except that the target reliability index βc changes from iteration k to the

next:

βc,(k+1) = −Φ−1(α)

√

1−
(

R
(k)
0

T ·R ·R(k)
0

)2

+ R
(k)
0

T ·R · β(k) (5.27)

In this equation, matrix R does not change from one iteration to the next (it may be computed and

stored once and for all), in contrast to vectors R0 and β. Note that no formal proof of the convergence

of such an algorithm has been given. However, it has been applied successfully in various contexts.

2.5 Conclusion

The method presented in this section allows the analyst to compute updated quantiles of the time-

dependent response of a model by incorporating monitoring data that is obtained at various time instants.

It is based on the transformation of the original problem into an inverse reliability problem. The latter

is solved by an inverse FORM algorithm adapted to the Bayesian updating context.

An application example in fracture mechanics will be given in Section 5, see also Perrin et al. (2007a).

The application to the updated prediction of concrete delayed stresses in a containment vessel has been

shown in Sudret et al. (2006), where an analytical model M was used. A similar application in which a

finite element model of the containment vessel is introduced, is presented in Berveiller et al. (2007). Due

to the computational burden, a polynomial chaos expansion of the finite element model response is used

in the latter case.

To conclude, it is worth emphasizing that the proposed method does update model predictions (in terms

of a conditional distribution) without yielding any information about the input variables. A Bayesian

updating technique for the input parameters of a model based on data related to response quantities is

now proposed.

3 Bayesian updating of input parameters

3.1 Introduction

In the previous section, the data gathered on a real system by monitoring was used to update the model

predictions, in the specific context of a time-dependent response. However, the proposed method does

not bring any additional information on the input parameters of the model.
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Updating the probabilistic description of the input parameters may be of interest though. Various

techniques have been proposed for this purpose, especially in structural dynamics. A large amount

of literature addresses the problem of identifying (in a Bayesian context) the best value of the input

parameter from dynamic test responses together with their uncertainty, see e.g. Katafygiotis et al.

(1998); Beck and Katafygiotis (2001); Katafygiotis and Beck (1998); Papadimitriou et al. (2001); Yuen

and Katafygiotis (2001, 2002); Beck and Au (2002). Similar Bayesian techniques have been introduced

in structural health monitoring in which the monitoring data is used to infer the changes in the stiffness

of the structure due to damage, see e.g. Johnson et al. (2004); Lam et al. (2004); Ching and Beck (2004);

Yuen et al. (2004).

A Bayesian framework to update the joint PDF of model input parameters that is consistent with the

assumptions in Section 1 is now presented.

3.2 Problem statement

Let us consider a real system and its (possibly time-dependent) model y =M(x, t). The input is modelled

by a random vector X with prescribed distribution pX(x). Let us assume that a set of measured response

quantities is available:

Yobs = {y(j)
obs, j = 1, . . . , nobs} (5.28)

From Section 1.3, it is supposed that the conditional distribution of each observation reads (Eq.(5.9)):

Y obs|X = x̃ ∼ N (M(x̃);Cobs) (5.29)

where x̃ is the (unknown) realization of the input random vector that corresponds to the very system

under consideration. In other words, the conditional PDF of the j-th observation Y j carried out at t = tj
reads:

fY j |X(y|X = x̃) = ϕN (y −M(x̃, tj);Cobs)

≡ (2π)−N/2 (detCobs)
−1/2 exp

[

−1

2
(y −M(x̃, tj))

T ·C−1
obs · (y −M(x̃, tj))

]

(5.30)

In the Bayesian paradigm, the above equation is interpreted as follows: vector X plays the role of the

“hyperparameters” of the distribution of Y j , j = 1, . . . , nobs. The Bayes’ theorem allows to derive the

posterior distribution of X based on realizations of Y j ’s, namely Yobs. This posterior distribution reads:

fX(x|Yobs) = c pX(x) L(x;Yobs) (5.31)

where c is a normalizing constant and L(x;Yobs) is the likelihood function of the observations:

L(x;Yobs) =

nobs
∏

j=1

ϕN (y
(j)
obs −M(x, tj);Cobs) (5.32)

Note that, in contrast to classical Bayesian analysis, the end product here is the posterior distribution of

X, and not the predictive distribution of the Y j ’s.

In order to completely characterize the posterior distribution fX(x|Yobs), the normalizing constant c in

Eq.(5.31) shall be computed, namely:

1

c
=

∫

RM

pX(x)

nobs
∏

j=1

ϕN (y
(j)
obs −M(x, tj);Cobs)dx (5.33)

This so-called Bayesian integral may be computed by simulation techniques (e.g. Monte-Carlo simulation,

Latin Hypercube sampling, etc.) or quadrature methods (Geyskens et al., 1993, 1998). Tensorized

Gaussian quadrature may be used when the dimension M of X is not too large. Note that sparse
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quadrature schemes as those used in Chapter 4, Section 4.2 in the context of spectral methods may be

used in larger dimensions (Perrin, 2008).

Alternatively, specific methods have been proposed recently that are especially suited to simulating

probability density functions resulting from Bayes’ theorem. These so-called Markov chain Monte Carlo

methods are now presented.

3.3 Markov chain Monte Carlo simulation

Markov chain Monte Carlo (MCMC) methods are a class of algorithms that allow one to sample from

probability distributions based on the construction of a Markov chain. Various methods known as the

random walk, the Gibbs sampler or the Metropolis-Hastings algorithm pertain to these methods. The

idea is to generate iteratively samples of a Markov chain, which asymptotically behaves as the PDF which

is to be sampled.

3.3.1 Metropolis-Hastings algorithm

The Metropolis-Hastings algorithm (Metropolis et al., 1953; Hastings, 1970) is a rejection sampling algo-

rithm that works as follows. A starting point x(0) is selected. Then in each step, the transition between

the states x(k) and x(k+1) reads:

x(k+1) =

{

x̃ ∼ q
(

x | x(k)
)

with probability α
(

x(k), x̃
)

x(k) else
(5.34)

In this equation, q
(

x | x(k)
)

is the so-called transition or proposal distribution, and the acceptance prob-

ability α
(

x(k), x̃
)

reads:

α
(

x(k), x̃
)

= min

{

1,
fX (x̃)

fX

(

x(k)
)

q
(

x(k) | x̃
)

q
(

x̃ | x(k)
)

}

(5.35)

A common transition is obtained by generating the candidate x̃ by adding a random disturbance ξ

to x(k) i.e. x̃ = x(k) + ξ. This random vector ξ is often built by means of independent zero-mean

Gaussian or uniform components. This implementation is referred to as a random walk algorithm and

this was the original version of the method suggested by Metropolis et al. (1953). In this case, the

transition distribution (e.g. uniform or Gaussian in practice) reads: q
(

x̃ | x(k)
)

= q
(

x̃− x(k)
)

. Due to

the symmetry, the acceptance probability defined in Eq.(5.35) reduces to:

α
(

x(k), x̃
)

= min

{

1,
fX (x̃)

fX

(

x(k)
)

}

(5.36)

In order to select x̃ with probability α
(

x(k), x̃
)

(Eq.(5.34)), a sample u(k) is drawn from a uniform

distribution U([0, 1]). Then x̃ is accepted if u(k) < α
(

x(k), x̃
)

and rejected otherwise.

Thus Eqs.(5.34),(5.36) allow one to draw samples of any distribution provided an algorithmic expression

(i.e. not necessarily analytical) for fX(x) is available. It is important to make sure that the simulated

Markov chain obtained by the Metropolis-Hastings algorithm is likely to be generated by the PDF fX(x)

of interest. Several monitoring methods ensure the control of convergence, see details in Raftery and

Lewis (1992); Cowles and Carlin (1996); Brooks and Roberts (1998) and a review in El Adlouni et al.

(2006). In particular, a number of samples generated first, which correspond to the so-called burn-in

period, are eventually discarded from the sample set.
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3.3.2 Cascade Metropolis-Hastings algorithm

In order to simulate posterior densities such as that obtained in Eq.(5.31), the Metropolis-Hastings

algorithm is used in a two-step cascade version, as proposed by Tarantola (2005). Broadly speaking, the

candidate x̃ should be accepted first with respect to the prior distribution as in Eq.(5.34). Then it is

accepted or rejected with respect to the likelihood function. The full algorithm is now summarized.

1. k = 0, initialize the Markov chain x(0) in a deterministic or random way;

While k ≤ nMCMC

2. generate a random increment ξ(k), compute the candidate x̃ = x(k) + ξ(k)

3. evaluate the “prior” acceptance probability: αp

(

x(k), x̃
)

= min

{

1, pX(x̃)

pX(x(k))

}

4. compute a sample up ∼ U([0, 1]):

(a) if up < αp

(

x(k), x̃
)

then go to 5. (acceptation)

(b) else go to 2. (rejection)

5. evaluate the “likelihood” acceptance probability: αL

(

x(k), x̃
)

= min

{

1, L(x̃;Yobs)

L(x(k);Yobs)

}

where L(.) is

the likelihood function in Eq.(5.32). Note that this requires a call to the model function.

6. compute a sample uL ∼ U([0, 1])

(a) if uL < αL

(

x(k), x̃
)

then x(k+1) ← x̃ and k ← k + 1 (acceptation)

(b) else go to 2. (rejection)

Once the required number of states of the Markov chain nMCMC has been computed, the first nburn

terms are discarded, as explained above.

3.4 Conclusion

In this section, the use of Markov chain Monte Carlo simulation for simulating the posterior PDF of the

input parameters has been introduced. This method allows the analyst to obtain samples of the posterior

PDF fX(x). These samples may be post-processed by kernel smoothing for graphical representation or

in order to compute quantiles or moments.

Each evaluation of the likelihood function requires an evaluation of the model (Eq.(5.32)). Thus it is

clear that the method is computationally expensive in terms of number of calls to the model, especially

since the candidate x̃ may be rejected by the test in step 6 of the cascade algorithm. Practically, it

may be applied using either analytical models or surrogate models (e.g. polynomial chaos expansions) of

complex models.

Once the samples of the posterior distribution have been computed, samples of the response vector are

available without any additional effort. Thus the cascade MCMC method also provides for free the

updated distribution of the response quantities. This means that the method developed in this section

may be applied to solve the same problems as those addressed in Section 2, at a greater computational

cost though. In particular, the Bayesian inverse FORM approach should be preferred when low quantiles

of the updated response are of interest. Indeed, obtaining an accurate description of the tails of the

posterior density of the response by MCMC is simply intractable.
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Various application examples of Bayesian updating of input parameters may be found in Tarantola (2005,

Chap. 7). Applications to the identification of parameters in structural dynamics may be found in Pillet

et al. (2006); Arnst (2007). Marzouk et al. (2007) make use of polynomial chaos expansions together with

the Bayesian framework in order to identify the sources in an inverse diffusion problem. A comparison

of the Bayesian inverse FORM and MCMC approaches in fracture mechanics will be given in Section 5

for the sake of illustration.

4 Stochastic inverse problems

4.1 Introduction

4.1.1 Problem statement

Let us consider again a mathematical model of a physical system y = M(x) that is possibly time-

dependent, although this dependency is not explicitely shown in the sequel for the sake of simplicity. In

a probabilistic context, the input is modelled by a random vector X, which is split here into two parts

as follows:

X = {X1,X2}T (5.37)

In this equation, random vector X2 gathers the input variables whose joint probability density function

(PDF) fX2
(x2) can be determined by either of the direct methods presented in Chapter 2, Section 3. By

simplicity, it will be referred to as the “known” input vector, meaning the vector of input variables with

known PDF.

Random vector X1 gathers the input variables whose joint PDF shall be obtained by an inverse method,

i.e. using data related to model response quantities. By simplicity, it will be referred to as the “unknown”

input vector, meaning the vector of input variables with yet-to-be-identified PDF. It is supposed through-

out this section that both vectors are independent (the notation x and (x1,x2) is used equivalently in

the sequel). Hence:

fX(x) ≡ fX(x1,x2) = fX1
(x1) fX2

(x2) (5.38)

The size of X1 and X2 will be denoted by M1 and M2 respectively (M1 +M2 = M).

In order to identify the unknown PDF fX1
(x1), a set of observations of response quantities is available:

Yobs = {y(1)
obs, . . . ,y

(nobs)
obs } (5.39)

where nobs is the number of observations. Practically speaking, this means that nobs different real

systems have been observed, which are all modelled by the same functionM, whereas the true value (i.e.

realization) of the input variables may differ from one real system to the other. This is the case when a

set of theoretically identical samples are tested in the same experimental conditions.

Remark It is worth emphasizing the difference between this section and Sections 2 and 3 again. In

those section the realizations were related to a single real system, whereas each observation in this section

correspond to a different real system. It is indeed the aleatoric uncertainty of the input parameters X1

within these real systems that is sought.

The literature addressing stochastic inverse problems as defined above is rather rare. In the context of pure

statistical approaches (i.e. where the input/output relationship is a mere linear or non linear regression

model), these problems shall be related to the so-called EM algorithm (which stands for Expectation -

Maximization) (Dempster et al., 1977) and its “stochastic” variants (Celeux and Diebolt, 1992; Celeux

et al., 1996) and “stochastic approximation EM” (SAEM) (Delyon et al., 1999; Kuhn, 2003).
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The same kind of inverse problems as those presented in this section is posed by Du et al. (2006); Cooke

et al. (2006) in the case when the available information is given in terms of quantiles of the response

quantities (instead of samples). Ratier et al. (2005) apply a stochatic inverse framework in order to

identify a single dispersion parameter used in a non parametric model of mistuned bladed disks. Arnst

(2007, Chap. 5) identifies the spatially varying Young’s modulus in a collection of bars from dynamical

tests.

4.1.2 Outline

The aim of this section is to present computational schemes that allow to estimate the unknown PDF

fX1
(x1) from fX2

(x2),M, Yobs. Various approaches are proposed depending on the following assump-

tions:

• the observations are supposed to be exact or not, i.e. the measurement error can be neglected or

not.

• the joint PDF fX1(x1) is either cast in a parametric or non parametric representation.

4.2 Identification using perfect measurements

Let us suppose first that the observations of response quantities are perfect (in practice, this means

that the measurement uncertainty is considered as negligible) and that the model is perfect. Note

that an imperfect model can always be considered as perfect by introducing an additive or multiplicative

correction factor, which is an additional random variable to be identified in X1. Under these assumptions,

the observations are considered as realizations of the random response vector:

Yobs = {y(q)
obs =M(x

(q)
1 ,x

(q)
2 ) , q = 1, . . . , nobs} (5.40)

Moreover, it is supposed that the observations are independent. Strictly speaking, this means that

{x(q)
1 , q = 1, . . . , nobs} (resp. {x(q)

2 , q = 1, . . . , nobs}) are realizations of independent identically dis-

tributed random vectors {Xq
1, q = 1, . . . , nobs} (resp. {Xq

2, q = 1, . . . , nobs}) which have the same

distribution fX1(x1) (resp. fX2(x2)). However, for the sake of simplicity, the above sample sets are

simply called “realizations of X1” (resp. X2).

4.2.1 Classical parametric approach

Kernel density approximation of the response PDF In this paragraph, the unknown PDF

fX1
(x1) is supposed to belong to a family of distributions which depend on a vector of hyperparam-

eters θ:

fX1
(x1) ≡ p(x1;θ) (5.41)

This situation occurs when there are some physical arguments that explain the variability of the input

variables in X1. The choice may also be imposed by expert judgment. The identification problem then

reduces to estimating the vector of hyperparameters θ ∈ Dθ ⊂ R
nθ that best fits the observations. The

maximum likelihood method may be applied for this purpose.

Let us denote by fY (y;θ) the joint PDF of the response vector Y =M(X1,X2) in the case when the

joint PDF of X1 is p(x1;θ). The joint PDF fY (y;θ) is of course not known analytically, however it may

be estimated by a kernel density approximation (Chapter 4, Section 5.1) as follows, for any prescribed

value of θ:
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• samples of X1 are drawn according to p(x1;θ), say {x(k)
1,θ, k = 1, . . . , nK};

• samples of X2 are drawn according to fX2
(x2), say {x(k)

2 , k = 1, . . . , nK};

• realizations of Y are computed:

y(k) =M(x
(k)
1,θ,x

(k)
2 ) k = 1, . . . , nK (5.42)

Then the PDF of Y is approximated by:

f̂Y (y;θ) =
1

nK

nK
∑

k=1

Kh

(

y −M(x
(k)
1,θ,x

(k)
2 )
)

(5.43)

where Kh() is a suitable multidimensional kernel (see Wand and Jones (1995) for details).

Maximum likelihood estimation From the above equation, the likelihood function of the observa-

tions is estimated by:

L(θ;Yobs) =

nobs
∏

q=1

f̂Y (y
(q)
obs;θ)

=

nobs
∏

q=1

[

1

nK

nK
∑

k=1

Kh

(

y
(q)
obs −M(x

(k)
1,θ,x

(k)
2 )
)

] (5.44)

The maximum likelihood estimator of θ is solution to the following maximization problem:

θ̂
ML

= arg max
θ∈Dθ

L(θ;Yobs) = arg max
θ∈Dθ

nobs
∏

q=1

[

1

nK

nK
∑

k=1

Kh

(

y
(q)
obs −M(x

(k)
1,θ,x

(k)
2 )
)

]

(5.45)

Note that the domain of optimization Dθ may be either the natural domain of definition of the hyperpa-

rameters of p(x1;θ) or some restrained (e.g. bounded) domain inferred by expert judgment.

The joint PDF fX1
(x1) identified by this parametric approach eventually reads:

f̂ML
X1

(x1) = p(x1; θ̂
ML

) (5.46)

Computational issues The maximum likelihood estimator in Eq.(5.45) is independent of the choice

of the kernel Kh provided the number of samples nK used in the representation is large enough (e.g.

1,000 − 10,000 in the applications). This means that nK runs of the model are used for each evaluation

of the likelihood function, which is itself evaluated many times in the optimization algorithm. This

is computationally tractable only when M is an analytical model or when surrogate models such as

polynomial chaos expansions are considered.

Moreover, the approximate expression for the likelihood function is usually not smooth and may present

local maxima (this problem is to be related to the identifiability of the parameters). Thus gradient-based

optimization algorithms often fail. The CONDOR algorithm (Vanden Berghen, 2004; Vanden Berghen

and Bersini, 2004), which is a trust-region algorithm, revealed remarkably efficient in this context.

In order to get a smoother approximation of L(θ;Yobs) when θ varies (e.g. throughout the maximization

process), the following strategy may be adopted when X1 can be cast as a θ-dependent transform of a

unique random vector χ, say X1 = T (χ,θ). In this case, a single sample set of realizations of χ (of size

nK) should be drawn at the beginning of the procedure, whereas the sample set {x(k)
1,θ = T (χ(k),θ), k =

1, . . . , nK} is used when evaluating Eq.(5.44) for various values of θ.
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4.2.2 Polynomial chaos-based parametric approach

In most situations, the analyst does not know the form of the joint PDF of the unknown random vector

X1. The framework proposed in the above paragraph may be generalized to a semi-parametric identifi-

cation using polynomial chaos expansions. The term “semi-parametric” means in this context that the

PDF fX1
(x1) is not sought in a prescribed family of distributions. In order to avoid any confusion, the

term PC-based parametric approach is used in the sequel.

Polynomial chaos representation By assuming that random vector X1 is of second order, one can

represent it as its Wiener-Hermite expansion (Ghanem and Spanos, 1991a):

X1 =
∑

α∈NN

aα Ψα({ξj}j≥1) (5.47)

where {ξj}j≥1 is an infinite sequence of independent standard normal random variables and α are integer

sequences with a finite number of non zero terms. By selecting a finite dimensional chaos using R1 basic

variables and polynomials up to order p1, the random vector may be given the following truncated PC

expansion:

XPC
1 =

∑

α∈NR1 , 0≤|α|≤p1

aα Ψα(Ξ) , Ξ = {ξ1, . . . , ξR1
}T (5.48)

Note that the number of basic random variables R1 is not necessarily equal to M1, although this is often a

suitable choice. In particular, when the components of X1 are supposed to be independent, it is efficient

to associate one single basic variable ξi to each component X1,i and expand the latter using univariate

Hermite polynomials in ξi:

X1,i =

p1
∑

j=0

ai
j Hej(ξi), i = 1, . . . ,M1 (5.49)

From Eq.(5.48), it is seen that the unknown random vector X1 may be approximately represented by a

finite set of coefficients:

A = {ak
α : α ∈ N

R1 , 0 ≤ |α| ≤ p1 , k = 1, . . . ,M1} (5.50)

To identify fX1
(x1) reduces in some sense to determining the optimal set A, which plays the role of the

hyperparameters θ in the parametric approach presented in Section 4.2.1. The difference lies in the fact

that the number of hyperparameters in the parametric case is usually much smaller than the number of

PC coefficients in the PC-based parametric case, at a price of far less flexibility though.

From the above notation, the joint PDF fX1
(x1) of interest is now approximated by:

fX1
(x1) ≈ fXPC

1
(x1;A) (5.51)

which is the PC-based parametric counterpart of Eq.(5.41). The only difference is that the above equation

is not an explicit expression, which is however not a problem for the identification, as will be shown in

the sequel.

Kernel density approximation of the response PDF In order to estimate the PC coefficients

gathered in A by the maximum likelihood method, it is again necessary to derive an expression of the

response PDF conditioned on these coefficients. In the parametric approach developed in Section 4.2.1,

this PDF was obtained by kernel density approximation (Eq.(5.43)), i.e. through realizations of X1.

In the present context, kernel density approximation may be equally used, provided the realizations of
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X1 are now conditioned on A. These realizations may be straightforwarly obtained from realizations of

standard normal vector Ξ from Eq.(5.48). This leads to:

f̂Y (y;A) =
1

nK

nK
∑

k=1

Kh



y −M





∑

α∈NR1 , 0≤|α|≤p1

aα Ψα(ξ(k)),x
(k)
2







 (5.52)

As mentioned above, it is better to use the same set of realizations {ξ(k), k = 1, . . . , nK} for all the eval-

uations of the above PDF. The likelihood function of the observations Yobs is computed as in Eq.(5.44):

L(A;Yobs) =

nobs
∏

q=1

f̂Y (y
(q)
obs;A) (5.53)

Thus the maximum likelihood estimator of A is solution to the following problem:

ÂML = arg max
A∈DA

nobs
∏

q=1





1

nK

nK
∑

k=1

Kh



y
(q)
obs −M





∑

α∈NR1 , 0≤|α|≤p1

aα Ψα(ξ(k)),x
(k)
2











 (5.54)

The domain of optimization DA may be constrained to improve the convergence of the optimization

algorithm. For instance, bounds to the components of the mean value of X1 (which is a0 in the PC

representation) may be imposed by the constraints:

a−
0,k ≤ a0,k ≤ a+

0,k , k = 1, . . . ,M1 (5.55)

Bounds to the variance of each component of X1 may be imposed as well:

∑

α∈NR1 , 0<|α|≤p1

(aα,k)2 ≤ (σ+
k )2 , k = 1, . . . ,M1 (5.56)

Such bounds may be easily included in the CONDOR optimizer mentioned earlier. The joint PDF

fX1
(x1) identified by the above PC-based parametric approach eventually reads:

fX1
(x1) ≈ fXPC

1

(

x1; Â
ML
)

(5.57)

which is not explicit. Note however that Eq.(5.48) may be used to draw samples according to the above

joint PDF, from which representations of the joint or marginal PDFs may be derived again by kernel

density approximation.

PC-based parametric “direct” statistical inference The formalism developed in this section may

be straightforwardly applied to the polynomial chaos representation of a set of measurements of input

parameters, i.e. to the direct PC-based parametric statistical inference problem. Suppose that a sample

set {x(q), q = 1, . . . , nobs} of a random vector X is available. This random vector may be approximated

by a PC expansion as in Eq.(5.48). Then the maximum likelihood estimator of the PC coefficients AX

reads (see Eq.(5.54) using the trivial model y = x):

ÂML
X = arg max

A∈DA

nobs
∏

q=1





1

nK

nK
∑

k=1

Kh



x(q) −
∑

α∈NR1 , 0≤|α|≤p1

aα Ψα(ξ(k))







 (5.58)

This kind of direct representation of the input data onto the polynomial chaos is of utmost interest in

the context of spectral stochastic finite element methods developed in Chapter 4, as already remarked by

Doostan and Ghanem (2005); Ghanem and Doostan (2006) who developed such polynomial chaos-based

identification methods for random fields.
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4.2.3 Conclusion

In this section, two methods have been proposed to identify “unknown” joint PDFs from observations of

response quantities in case the measurement error is negligible. This lead to the introduction of kernel

density approximations in order to approximate the joint PDF of the response quantities, from which

the observations are realizations. Then the maximum likelihood method has been used to identify the

hyperparameters of the joint PDF fX1
(x1).

In a parametric paradigm, fX1
(x1) is selected within a family of distributions. A PC-based parametric

version of the method has also been proposed using a polynomial chaos representation. In both cases,

the “known” input vector x2 is modelled by a random vector X2 with prescribed joint PDF.

In certain situations, it may happen that the observation data is gathered in a controlled experimental

environment, i.e. components the input vector x2 may be considered as deterministic for each observation

(possibly with different values). This is for instance the case when considering laboratory experiments.

Consequently, the term x
(q)
2 in Eq.(5.40) is supposed to be known, say x̃

(q)
2 (it may be different for each

observation). The derivations in the two previous sections remain valid, provided x
(k)
2 (which was related

to the sampling of X2 in the kernel density representations) is replaced by x̃
(q)
2 in Eqs.(5.45),(5.54).

Remark One possible way of identifying the joint PDF fX1(x1) would be:

• to solve the deterministic inverse problem for each observation, e.g. by least-square minimization:

{x(q)
1 ,x

(q)
2 } = Argmin

x∈RM

||y(q)
obs −M(x)||2 (5.59)

where ||.|| is the Euclidean norm;

• to study the statistics of the obtained samples.

Such an approach has been used in Desceliers et al. (2006, 2007) in order to identify the spatially varying

Young’s modulus in an elastic structure. An approximation is obviously introduced when the minimal

value obtained in Eq.(5.59) is not zero, i.e. when there is no exact solution to the inverse problem. This

situation is likely to happen in real-world problems in which measurement and model errors cannot be

neglected. An identification technique accounting for measurement/model error is now proposed to deal

with these cases, which does not resort to the solution of deterministic inverse problems.

4.3 Identification with measurement/model error

4.3.1 Introduction

The ideal case of negligible measurement error is scarcely encountered in practice. Moreover, even if the

model is unbiased in the mean, there may be some discrepancy between its output and the true value

of the system response for specific realizations of the input variables. As explained in Section 1.3, it

is possible to introduce a single measurement/model error term (simply qualified as error term in the

sequel). According to the discussion in that section, assuming the error term has a centered Gaussian

distribution (with covariance matrix Cobs) leads to introduce the conditional joint PDF of the observation

vector Y obs (Eq.(5.30)). From this equation, the unconditional PDF of the observations reads:

fY obs
(y) = EX

[

fY obs|X(y|X)
]

= EX [ϕN (y −M(X);Cobs)] (5.60)
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4.3.2 Parametric approach

In this paragraph, the unknown PDF fX1
(x1) is such cast as fX1

(x1) ≡ p(x1;θ) where the vector of

hyperparameters θ is to be computed. Eq.(5.60) rewrites in this case:

fY obs
(y;θ) =

∫

RM1

∫

RM2

ϕN (y −M(x1,x2);Cobs) p(x1;θ) fX2
(x2) dx1dx2 (5.61)

where the dependence in θ has been shown for the sake of clarity. Thus the likelihood function of the

observations Yobs reads:

L(θ;Yobs) =

nobs
∏

q=1

fY obs
(y

(q)
obs;θ) (5.62)

The maximum likelihood estimate θ̂
ML

is obtained as the solution of the following maximization problem:

θ̂
ML

= arg max
θ∈Dθ

nobs
∏

q=1

∫

RM1

∫

RM2

ϕN (y
(q)
obs −M(x1,x2);Cobs) p(x1;θ) fX2

(x2) dx1dx2 (5.63)

Then the identified joint PDF reads f̂ML
X1

(x1) = p(x1; θ̂
ML

).

From a computational point of view, the double integral in Eq.(5.63) may be evaluated by one of the

methods presented in Chapter 4 for the evaluation of polynomial chaos coefficients:

• simulation methods, e.g. crude Monte Carlo simulation, Latin Hypercube sampling. Note that

quasi-random sequences may be used as well, provided the double integral is first mapped onto

[0, 1]M1+M2 ;

• full or sparse quadrature methods.

Depending on the value of M , one or the other class of methods may be more efficient.

As observed by Cambier4, Eq.(5.63) may be ill-conditioned if the variance of the measurement error Cobs

is small compared to the scattering of the response that results from the aleatoric uncertainty of X. An

alternative expression for the likelihood may be obtained again by kernel density estimation. Realizations

of Y shall be computed as in Section 4.2.1, except that realizations of the error term are now added to

the realizations of the model response in Eq.(5.42). Then the PDF of Y is obtained by a kernel density

approximation as in Eq.(5.43) and used to compute the likelihood function. This strategy was successfully

used in Ratier et al. (2005), where a single parameter was identified. The two computational strategies

have been recently benchmarked in Perrin (2008).

4.3.3 PC-based parametric identification

When the analyst does not want to prescribe a particular shape for the joint PDF fX1
(x1), he or she

may represent X1 by a suitable polynomial chaos expansion. Using the same notation as in Section 4.2.2,

the joint PDF of an observation reads:

fY obs
(y;A) = EΞ,X2



ϕN



y −M





∑

α∈NR1 , 0≤|α|≤p1

aα Ψα(Ξ),X2



 ;Cobs







 (5.64)

4Private communication.
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Consequently the likelihood function reads:

L(A;Yobs) =

nobs
∏

q=1

fY obs
(y

(q)
obs;A) (5.65)

and the maximum likelihood estimator reads:

ÂML = arg max
A∈DA

nobs
∏

q=1







∫

RR1

∫

RM2

ϕN



y
(q)
obs −M





∑

α∈NR1 , 0≤|α|≤p1

aα Ψα(ξ),X2



 ;Cobs



 . . .

. . . ϕR1
(ξ) fX2

(x2) dξ dx2











(5.66)

where ϕR1
(ξ) is the R1-dimensional standard normal PDF.

From a computational point of view, the PC-based likelihood function in Eq.(5.66) is similar to (i.e. not

more complex than) the parametric one in Eq.(5.63), provided the simulation or quadrature methods

used for its evaluation are applied with respect to ϕR1
(ξ) fX2

(x2) instead of p(x1;θ) fX2
(x2).

4.4 Conclusion

This section has addressed so-called stochastic inverse problems which consist in infering the joint PDF

of input parameters from observations of response quantities on a set of real systems that are represented

by the same model M.

In contrast to other approaches presented recently, the methods proposed here do not rely upon the

preliminary solution of deterministic inverse problems. They may be applied in the context of perfect

measurements or in case of measurement/model error. In each case, a parametric and a non parametric

solution is proposed, the latter being based on the polynomial chaos representation of the unknown vector

X1.

All the variants of the method have in common the fact that they require a large number of model

evaluations. Practically speaking, analytical or semi-analytical models may be treated. For complex

systems, surrogate models should be envisaged.

Finally, it is worth remarking that as in classical statistics, the maximum likelihood method provides

accurate results if there is a sufficient number of observations (e.g. 30-50). The same kind of restriction

applies in the context of inverse problems: the need for a large sample set is usually even more crucial

here, due to problems of identifiability. In particular, a unique solution cannot be expected if the size of

X1 is greater than that of yobs. In case of fewer observations, Bayesian approaches are to be resorted

to: the joint PDF fX1(x1) is given a prior density pX1(x1). Determining the posterior density exactly

reduces to the formalism described in Section 3. Thus the solving strategy developed in that section fully

applies in this context.

To conclude, one can observe that the identification “with an error term” (Section 4.3) tends to the

identification “without error” (Section 4.2) when the variance of the observation error Cobs tends to

zero. The proof may be sketched (without any mathematical rigour) as follows. When considering the

parametric approach, the likelihood in Eq.(5.62) has the following limit when Cobs → 0:

lim
||Cobs||→0

L(θ;Yobs) =

nobs
∏

q=1

EX1,θ,X2

[

δ(y
(q)
obs −M(X))

]

(5.67)

where δ is the Dirac function. The kernel density approximation in Eq.(5.44) tends to the same expression

when the number of samples nK tends to ∞ and the bandwith h to zero simultaneously. The same

reasoning applies in the PC-based parametric case (Eqs.(5.64),(5.65) vs. (5.52),(5.53)).
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5 Application examples

5.1 Bayesian updating in fatigue crack growth models

5.1.1 Introduction

Fatigue crack growth under homogeneous cycling conditions shows scattering as experimentally observed

by Virkler et al. (1979). These experimental results have been used later on in several statistical analyses,

see e.g. Ditlevsen and Olesen (1986); Kotulski (1998)5. Fatigue crack growth is commonly modelled by

the Paris-Erdogan equation, whose parameters should be given a probabilistic description in order to

reproduce the observations, i.e. the evolution of the crack length vs. the number of cycles. As will be

shown below, this prior estimation may be quite inaccurate.

The present example aims at demonstrating that measurements of the crack length at early stages of

crack propagation may be used to update the predictions and reduce the uncertainty accordingly. The

approaches respectively presented in Sections 2 and 3 are applied and compared.

5.1.2 Virkler’s data base and deterministic fatigue crack growth model

Virkler et al. (1979) experimentally studied the scattering of fatigue crack growth by testing a set of

68 specimens made of 2024-T3 alluminium alloy with identical geometry (length L = 558.8 mm, width

w = 152.4 mm and thickness d = 2.54 mm). Each trajectory of crack propagation consists in 164 points.

The applied stress range is equal to ∆σ = 48.28 MPa and the stress ratio is R = 0.2. As shown in

Figure 5.1, fatigue crack growth shows scattering, since the limit crack size alim = 49.8 mm is attained

between 215,000 and 310,000 cycles depending on the sample.
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Figure 5.1: Fatigue crack growth – experimental curves obtained by Virkler et al. (1979)

5The original data was provided to the authors by Dr Jean-Marc Bourinet, Institut Français de Mécanique Avancée,

who is gratefully acknowledged.
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In the sequel, fatigue crack growth is modelled by the Paris-Erdogan equation (Paris and Erdogan, 1963):

da

dN
= C (∆K)

m
(5.68)

In this expression, a is the crack length, ∆K is the variation of the stress intensity factor in one cycle of

amplitude ∆σ and (C,m) are material parameters. The variation of the stress intensity factor ∆K reads:

∆K = ∆σ F
( a

w

)√
πa (5.69)

where w is the specimen width and where the so-called Feddersen correction factor is given by:

F
( a

w

)

=
1

√

cos
(

π a
w

)

for
a

w
< 0.7 (5.70)

This correction factor is valid for cracks embedded in finite-width plates as those used by Virkler et al.

Eqs.(5.68)-(5.70) are solved by numerical integration using Matlab in this application example.

5.1.3 Probabilistic model

For each experimental curve in Figure 5.1, the best-fit values of (m, logC) in Eq.(5.68) may be identified.

The statistics of the obtained parameters (m, logC) have been computed by Kotulski (1998). They are

reported in Table 5.1. The correlation coefficient is equal to 0.997, meaning that there is a strong linear

dependency between the two parameters.

Table 5.1: Probabilistic input data for the Paris-Erdogan law (Kotulski, 1998)

Parameter Type of distribution Bounds Mean Coef. of variation

m Truncated normal [−∞, 3.2] 2.874 5.7%

logC Truncated normal [−28,+∞] -26.155 3.7 %

The point of this example application is to show that the use of crack length measurements in the early

stage of the crack propagation allows one to predict accurately the remaining part of the curve. For this

purpose, a particular experimental curve (among the 68 available) is considered: it corresponds to the

slowest crack propagation (the critical crack length ā = 49.8 mm is attained in about 310,000 cycles).

5.1.4 Results

Prior prediction When considering the input PDFs reported in Table 5.1, prior confidence intervals on

the crack propagation curve may be computed by inverse FORM analysis (see Section 2.3) and validated

by Monte Carlo simulation. The 2.5% and 97.5% quantiles have been plotted in Figure 5.2 together with

the “slowest” experimental crack propagation curve. It clearly appears that the latter departs much from

the 95% confidence interval. Indeed the predicted median (28.3 mm) overestimates by 40% the observed

crack length at 200,000 cycles (19.9 mm). Moreover the bandwidth of the 95% confidence interval is

equal to 12.2 mm which makes the prediction rather loose.

Updated prediction by Bayesian inverse FORM The updating scheme presented in Section 2

has been applied using 5 measured values of crack length, as reported in Table 5.2 (see the squares in

Figure 5.3). For each value, the standard deviation of the measurement/model error is equal to 0.2 mm.

The posterior confidence interval in Figure 5.3 encompasses the experimental curve. The error in the

median prediction at 200,000 cycles is about 7% whereas the bandwidth of the 95% confidence interval

is 2.4 mm.
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Figure 5.2: Fatigue crack growth – prior prediction of the 95% confidence interval and experimental

“slow” crack propagation curve

Table 5.2: Fatigue crack growth – data used for updating the predictions

Crack length (mm) Number of cycles

9.4 16,345

10.0 36,673

10.4 53,883

11.0 72,556

12.0 101,080

Updated prediction by MCMC simulation The updating scheme presented in Section 3 is now

applied. The cascade Metropolis-Hastings algorithm is used to obtain a 10,000-sample Markov chain

(the burn-in period is automatically adjusted and corresponds in practice to the 200-300 first samples).

Plots of the prior and posterior PDFs of the model input parameters (logC, m) are shown in Figure 5.4

for two values of the standard deviation of the measurement/model error, namely σobs = 0.1 mm and

σobs = 0.2 mm. As expected, the posterior distributions show less scattering than the prior. Moreover the

difference between the posterior PDFs is rather insignificant (especially the mode (logC = −26.7 , m =

2.9) is almost identical in both cases). This is an interesting result since the standard deviation of the

measurement/model error will be often prescribed by expert judgment in practice.

By propagating the samples of the posterior distributions obtained by MCMC simulation through the

crack growth model, it is possible to obtain posterior confidence intervals. Results are plotted in Figure 5.5

for σobs = 0.1 mm and σobs = 0.2 mm.

It is first observed that the updated confidence interval is again much narrower than that obtained from the

prior analysis. Moreover, it satisfactorily encompasses the experimental curve up to N=175,000 cycles.

It is observed that the experimental curve eventually deviates from the prediction, as if there was a

secondary crack propagation kinetics after 175,000 cycles different from the early stage. Of course this

cannot be predicted by the Paris law with constant coefficients. Note however that the updated results

can be improved when selecting a larger model error, as seen from Figure 5.5-b.
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Figure 5.3: Fatigue crack growth – posterior 95% confidence interval obtained by Bayesian inverse FORM

analysis

5.1.5 Conclusion

The Bayesian updating methods developed in Sections 2 and 3 have been illustrated on the example of

fatigue crack growth. It has been shown that the use of data collected in the early stage of propagation

allows the analyst to predict accurately the later evolution of the crack size. In particular, the introduction

of the measurement/model error allows the analyst to account for phenomena that are not considered

in a simple model (e.g. a constant crack propagation coefficients in the Paris-Erdogan law). It has

been shown that both methods provide similar results, although their computational scheme is quite

different. A detailed investigation of the approaches and parametric studies with respect to the number

of observations, accuracy of the measurements, etc. can be found in Perrin (2008).

5.2 Stochastic identification of a Young’s modulus

5.2.1 Problem statement

In order to illustrate the methods proposed in Section 4, an academic example is devised, namely the

identification of the aleatoric uncertainty of the Young’s modulus of identical simply supported beams is

considered (Figure 5.6). The beams have a length L = 2 m and a rectangular cross section with width b

and height h.

A pinpoint load is applied at midspan by the experimental device and the vertical displacement at

midspan vmax is measured. A simple model of bending beam is considered. Assuming that the material

constitutive law is linear (Young’s modulus E), the maximal deflection reads:

vmax =
F L3

48EI
(5.71)

where I is the inertia of the beam, which is equal to I = b h3/12 in case of a rectangular cross section.

Thus the model of the bending beams under consideration reads:

vmax =M(L, b, h, F,E) ≡ F L3

4E bh3
(5.72)
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Figure 5.4: Fatigue crack growth – prior and posterior PDFs of (logC, m) obtained by Markov chain

Monte Carlo simulation

The probabilistic description of the “known” parameters is given in Table 5.3 whereas the Young’s

modulus is the single “unknown” parameter6. All the input variables are independent.

Table 5.3: Stochastic inverse problem – probabilistic description of the parameters

Parameter Type of distribution Mean value Coef. of variation

Length L deterministic 2 m –

Width b Gaussian 0.1 m 3%

Height h Gaussian 0.1 m 3%

Load F lognormal 10 kN 5%

6These terms have been defined in page 96.
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Figure 5.5: Fatigue crack growth - posterior 95% confidence interval obtained by Markov chain Monte

Carlo simulation

5.2.2 Pseudo-measurement data

In a real-life situation, a set of identical beams would have been tested and the maximum deflection at

midspan measured for each of them. In the present case, these “measurement data” are generated as

follows. It is supposed that the Young’s modulus of the material follows a lognormal distribution with

mean value µE = 10, 000 MPa and coefficient of variation CVE = 25%. A number n = 50 samples of

the input parameters X = {L, b, h, F, E} are drawn according to their respective distributions and a

sample maximal displacement is computed from Eq.(5.72) in each case.
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Figure 5.6: Stochastic inverse problem – experimental device

Two cases are then considered in the sequel:

• if the measurement procedure is supposed to be perfect, then the obtained 50 samples are supposed

to be the observed values. These values are gathered in a set denoted by Y
(1)
obs;

• if measurement error is taken into account, then the values of maximal displacement obtained

previously are perturbed by adding independent realizations of a centered Gaussian random variable

with standard deviation σmeas. The results are gathered in a set denoted by Y
(2)
obs;

5.2.3 Results in case of perfect measurements

The probability density function of the Young’s modulus is identified using the PC-based parametric

stochastic inverse method presented in Section 4.2.2. The sample set of vertical displacements vmax (in

cm) is:

Y
(1)
obs = {3.460 3.530 1.862 1.348 2.866 1.389 2.195 3.450 2.111 2.381

1.616 1.849 2.391 1.510 1.481 1.634 1.065 2.437 1.292 1.935

1.595 2.532 2.750 2.421 1.688 1.952 2.041 3.365 2.542 1.709

2.338 1.958 2.591 2.278 2.652 1.595 2.021 2.409 1.563 2.162

1.883 1.638 2.370 1.759 1.868 2.399 1.690 2.562 2.750 2.063}

(5.73)

A third order PC expansion of the Young’s modulus is used with 4 unknown coefficients A = {a0, a1, a2

a3}. A number nK = 10, 000 samples is used in the kernel representation together with a Gaussian

kernel. The PC coefficients obtained by the maximum likelihood estimator in Eq.(5.58) are reported in

Table 5.4.

Table 5.4: Stochastic inverse problem – results (case of perfect measurements)

PC coefficients a0 = 9, 966.6 a1 = 2, 328.3 a2 = 276.8 a3 = −136.5

Statistical moments From PC coefficients From samples Discrepancy (%)

Mean value 9,966.6 9,972.8 0.1

Standard deviation 2,348.7 2,434.4 3.5

Skewness coefficient 0.4306 0.5396 20.2

Kurtosis coefficient 2.7929 2.9351 4.8

The statistical moments obtained from the PC expansion coefficients are reported in Table 5.4, column #2.

They compare very well with the statistical moments obtained from the sample set of Young’s moduli

(column #3) that have provided the pseudo-measurement data (note that these values would not be

available in a real problem). Indeed, the error in the mean and standard deviation is 0.1% and 3.5%

respectively.
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It is worth noting that these values slightly differ from the parameters of the theoretical distribution of

E that was used to generate the pseudo-measurement data (µE = 10, 000 MPa and σE = 2, 500 MPa).

This is due to statistical uncertainty. A closer fit is of course obtained when the size of the observation

data set is increased.
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Figure 5.7: Stochastic inverse problem – PDF of the identified Young’s modulus (case of perfect mea-

surement)

These results are confirmed by graphical representation. The PDF of the identified Young’s modulus is

plotted in Figure 5.7 using a kernel smoothing technique onto the PC expansion (see details in Chapter 4,

Section 5.1). It is compared to the histogram and kernel distribution of the sample set of Young’s moduli

used to generate the pseudo-measurement data. The curves fit reasonably well the data in the central

part, whereas the result is less accurate in the tails. This is mainly due to the fact that n = 50 data

points are not enough to describe the tails of the distribution. The convergence to the true underlying

distribution when n is increased has been numerically assessed.

5.2.4 Results in case of measurement error

The stochastic inverse problem is now solved in presence of measurement uncertainty. It is supposed

that the accuracy of the displacement measurement is ±1 mm (which is intentionally rather gross for the

sake of illustration). Accordingly, the set of observations Y
(1)
obs has been perturbed by adding realizations

of centered Gaussian variables with standard deviation σmeas = 0.5 mm and rounding. This procedure

yields the following sample set of measured vertical displacements vmax (in cm):

Y
(2)
obs = {3.5 3.5 1.8 1.2 2.9 1.4 2.2 3.6 2.1 2.3

1.6 1.9 2.3 1.5 1.5 1.6 1.0 2.4 1.2 2.0

1.6 2.5 2.7 2.4 1.7 1.9 2.0 3.3 2.5 1.7

2.3 2.0 2.7 2.3 2.7 1.6 2.1 2.4 1.6 2.2

1.9 1.7 2.4 1.8 1.8 2.4 1.6 2.6 2.9 2.0}

(5.74)

The PC coefficients obtained by the maximum likelihood estimator in Eq.(5.66) are reported in Table 5.5.

The integrals are evaluated using Monte Carlo simulation for the sake of simplicity (10,000 samples were
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used). The statistical moments obtained from this PC expansion are compared to the sample statistical

moments obtained from the sample set of Young’s moduli (Table 5.5, columns #2 and 3 respectively).

Table 5.5: Stochastic inverse problem – results (case of measurement uncertainty)

PC coefficients a0 = 10, 072.0 a1 = 2, 447.6 a2 = 626.3 a3 = 36.6

Statistical moments From PC coefficients From sample set Discrepancy (%)

Mean value 10,072.0 9,972.8 1.0

Standard deviation 2,526.7 2,434.4 3.8

Skewness coefficient 1.0667 0.5396 97.6

Kurtosis coefficient 4.6690 2.9351 59.1

As in the case of perfect measurements, the mean value and standard deviation of the Young’s modulus

obtained from the PC expansion coefficients compare fairly well with the empirical moments computed

from the sample set. The results for higher order moments is however less accurate than in that case.

The PDF of the identified Young’s modulus is plotted in Figure 5.8 using a kernel smoothing technique

onto the PC expansion. It is compared to the histogram and kernel distribution of the sample set

of Young’s moduli. The curves fit reasonably well the data in the central part, whereas the result is

less good in the tails due to the rather small size of the sample set. Again it is emphasized that the

measurement error is purposedly far greater than what should be expected in real experiments, for the

sake of illustration.
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Figure 5.8: Stochastic inverse problem – PDF of the Young’s modulus (case of measurement/model error

σmeas = 0.5 mm)

5.2.5 Conclusion

An academic application example of the stochastic inverse methods presented in Section 4 has been

presented. The aleatoric uncertainty of a model input parameter (here, the material Young’s modulus of

a bending beam) is identified in a PC-based parametric context from observations of the model response

(here, the deflection at midspan). A similar example was presented in Perrin et al. (2007) where the
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randomness of the applied loading on identical beams was of interest. In that communication, various

numerical methods for the computation of the integrals in Eq.(5.66) and their incidence onto the obtained

PC coefficients are compared.

The framework for stochastic inverse problems may be applied to other identification problems, e.g.

the identification of complex non linear constitutive laws, for which the deterministic algorithms that

are usually used do not take into account the possible aleatoric uncertainty of these parameters. The

identification of random fields may also be addressed using the same framework provided the fields are

given a discretized spectral representation beforehand.

Numerous application examples and convergence studies have been carried out to assess the robustness

of the proposed methods in Perrin (2008). In particular, it is shown that the limit case of the inverse

method with measurement/model error (Section 4.3) when σmeas tends to zero, is the inverse method

with perfect measurement (Section 4.2).

6 Conclusions

In this chapter, methods for introducing experimental observations in the treatment of uncertainties in

mathematical models of physical phenomena have been proposed. Two classes of problems have been

distinguished, namely:

• single real systems that are monitored in time: the observations of the model response may be used

to update in a Bayesian context either the joint PDF of the input parameters (Markov chain Monte

Carlo approach) or directly the model response (Bayesian inverse FORM approach);

• the stochastic inverse problems, in which the aleatoric uncertainty of some input parameters is to

be infered from observations of response quantities.

In the latter case, various original methods have been proposed and illustrated on a simple application

example. It is worth emphasizing that the field of stochastic inverse problems is not yet as mature as that

of uncertainty propagation. In particular, significant efforts should be made in the future to alleviate the

computational burden associated with these techniques. Note that original ideas are in progress in the

domain of identification that may lead to consider the problem differently (Tarantola, 2007).





Chapter 6

Time and space-variant reliability

methods

1 Introduction

1.1 Motivation

Although more or less ignored so far in this document, the time dimension is often present in structural

reliability problems and has to be properly taken into account. Let us come back to the most basic

reliability problem known as“R-S”, for which failure occurs when a demand S is greater than a capacity

R. It is clear that for real structures both quantities may depend on time. Indeed:

• the resistance (or capacity) of the structure (e.g. material properties) may be degrading in time.

The degradation mechanisms usually present an initiation phase and a propagation phase. Both

the initiation duration and the propagation kinetics may be considered as random in the analyses.

Examples of these mechanisms are crack initiation and propagation in fracture mechanics, corrosion

in steel structures or in reinforced concrete rebars, concrete shrinkage and creep phenomena, etc.

The specific feature of degradation models is that they are usually monotonic and irreversible;

• loading may be randomly varying in time. In this case, the fluctuations of the load intensity should

be modelled by random processes. In practice, this modelling is required in order to describe

properly environmental loads such as wind velocity, temperature, wave height, or service loading

(traffic, occupancy loads, etc.).

The time dependency in the so-called time-variant reliability problems may come from one or both of

these sources. As will be seen in the sequel, the unique characteristics of time-variant reliability problems

urge to devise specific methods.

1.2 Outline

The probabilistic modelling of quantities randomly varying in time requires the introduction of random

processes. In essence, random processes are the same mathematical objects as the random fields intro-

duced in Chapter 2, Section 4. However, specific additional tools are required in time-variant reliability

analysis. They will be briefly described in Section 2. Again, the purpose of this section is not to present
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the mathematics of general random processes comprehensively. It is rather a short summary of useful

notation and basic properties. Specific attention is devoted to random processes that are commonly used

in time-variant structural reliability problems.

The formulation of time-variant reliability problems is then given in Section 3, where the important

notion of outcrossing rate is introduced. Analytical results for outcrossing rates are given in Section 4 for

Gaussian differentiable processes.

Two methods are then introduced to solve time-variant reliability problems based on the outcrossing

approach:

• the so-called asymptotic method (AsM), which is based on a set of analytical results and related

algorithms, has been developed through the 80’s up to the mid 90’s. There is a large number

of contributions to this topic in the literature, which have been thoroughly reviewed in Rackwitz

(1998, 2001). A comprehensive presentation can be found in Rackwitz (2004). The reader is also

referred to well-known text books for complementary viewpoints, namely Ditlevsen and Madsen

(1996, Chap. 15), Melchers (1999, Chap. 6), Faber (2003, Chap. 9). The main ingredients of the

AsM are summarized in Section 5.

• the so-called PHI2 method, which is based on the computation of the outcrossing rate by solving a

two-component parallel system reliability problem, is detailed in Section 6.

Application examples and a concluding discussion are presented in Section 7. Finally, space-variant

reliability problems and their resolution are introduced in Section 8. Note that this chapter does not

encompass methods of stochastic dynamics and random vibrations. Should the reader be interested in

these topics, he or she should refer to specific publications, e.g. Kree and Soize (1983); Soize (1988);

Roberts and Spanos (1990); Lutes and Sarkani (2003) among others.

2 Random processes

2.1 Definition

A scalar random (or stochastic) process X(t, ω) is a continuous set of random variables, such that for any

time instant t0, X(t0, ω) ≡ Xt0(ω) is a random variable with prescribed properties. In this notation, ω

denotes the outcome, all the possible outcomes (or realizations) of the random variables being gathered

in the sample space Ω. It will be omitted in the sequel unless necessary. Conversely, a realization (or

sample function or trajectory) of the random process is obtained by fixing the outcome to ω0 and will be

denoted using small letters by x(t, ω0), or simply x(t) for the sake of simplicity. Examples of realizations

are given in Figure 6.1.

The complete probabilistic description of a random process is given by assigning the set of all joint

probability density functions (PDF) of finite sets of variables {Xt1(ω), . . . ,Xtn
(ω))} for any values

{t1 < · · · < tn ∈ R
n}. In usual cases, this comprehensive assignment reduces to few clearly identified

quantities, as described below.
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Figure 6.1: Realizations of a scalar random process

2.2 Statistics of scalar random processes

Let us denote by fX(x, t) the probability density function (PDF) of random variable Xt. The mean

value and variance of the process are defined by:

µX(t) = E [Xt] =

∫ ∞

−∞
x fX(x, t) dx (6.1)

σ2
X(t) = E

[

(Xt − µX(t))
2
]

=

∫ ∞

−∞
(x − µX(t))

2
fX(x, t) dx (6.2)

where E [.] denotes the mathematical expectation. The autocorrelation function of the process is defined

by:

RXX(t1, t2) = E [Xt1 Xt2 ] =

∫ ∞

−∞

∫ ∞

−∞
x1 x2 fXX (x1, x2; t1, t2) dx1 dx2 (6.3)

where fXX(.) is the joint probability density function of variables {Xt1(ω) , Xt2(ω)}. The autocovariance

function is defined as follows:

CXX(t1, t2) = Cov [Xt1 ,Xt2 ] = E [(Xt1 − µX(t1)) (Xt2 − µX(t2))]

=

∫ ∞

−∞

∫ ∞

−∞
(x1 − µX(t1)) (x2 − µX(t2)) fXX (x1, x2; t1, t2) dx1 dx2

= RXX(t1, t2)− µX(t1)µX(t2)

(6.4)

As might be expected, if t2 = t1 = t, the autocovariance function reduces to the variance function σ2
X(t):

σ2
X(t) = CXX(t, t) = RXX(t, t)− µ2

X(t) (6.5)

Finally the autocorrelation coefficient function is defined by :

ρ(t1, t2) =
Cov [Xt1 ,Xt2 ]

σX(t1)σX(t2)
(6.6)

2.3 Properties of random processes

2.3.1 Stationarity

A random process is said stationary when its probabilistic characteristics is independent of a shift in

the parameter origin. Precisely, when all its statistical moments are independent of time, it is strictly

stationary.
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When the mean value µX does not depend on time, and the autocorrelation function RXX(t1, t2) only

depends on the time shift τ = t2 − t1, the process is said to be weakly stationary. In this case, the

autocorrelation function may be rewritten as:

RXX(τ) = E [XtXt+τ ] (6.7)

The following properties hold for stationary processes:

• RXX(0) = E
[

X2
t

]

represents the mean-square value of Xt.

• RXX(τ) is an even function in τ : RXX(τ) = RXX(−τ)

• |RXX(τ)| ≤ RXX(0) = E
[

X2
t

]

: the maximum is reached for τ = 0

• As a consequence, its derivatives, if they exist, have to satisfy1:

dRXX(τ)

dτ

∣

∣

∣

∣

τ=0

= ṘXX(0) = 0 ;
d2RXX(τ)

dτ2

∣

∣

∣

∣

τ=0

= R̈XX(0) ≤ 0 (6.8)

Random processes are non stationary when their statistical properties vary in time. Examples of real-

izations of non-stationary processes are given in Figure 6.2, which includes the special cases of (a) time

varying mean value, (b) time varying standard deviation, and (c) a combination of both.

2.3.2 Differentiability

A series of random variables {Xn (ω) , n ≥ 1} having a finite variance is said to converge in the mean

square sense to the random variable X(ω) if:

lim
n→∞

E
[

(Xn −X)
2
]

= 0 (6.9)

which is written (l.i.m stands for limit in the mean square sense):

l.i.m
n→∞

Xn = X (6.10)

The derivative of a random process is defined by the following l.i.m (if it exists) and it is denoted by

Ẋ(t):

l.i.m
∆t→0

X(t+ ∆t, ω)−X(t, ω)

∆t
=

d

dt
X (t, ω) ≡ Ẋ (t, ω) (6.11)

In this case, the process is said differentiable. By linearity, the mean of the derivative process is the

derivative of the mean:

E
[

Ẋ(t, ω)
]

=
d

dt
µX(t) (6.12)

The cross-correlation between a process and its derivative can be computed as follows:

RXẊ(t1, t2) = E
[

Xt1Ẋt2

]

= lim
∆t2→0

E

[

Xt1

X(t2 + ∆t2)−Xt2

∆t2

]

= lim
∆t2→0

[

RXX(t1, t2 + ∆t2)−RXX(t1, t2)

∆t2

] (6.13)

which turns out to be:

RXẊ(t1, t2) =
∂RXX(t1, t2)

∂t2
(6.14)

1In the following the notation Ż(τ) denotes the first derivative of any differentiable function Z(τ) which depends on a

single parameter τ . The notation Z̈(τ) denotes the second derivative, etc.
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a - Time varying mean value

b - Time varying standard deviation

c - Time varying mean and standard deviation

Figure 6.2: Realizations of non stationary random processes

Similarly the autocorrelation function of the derivative process reads:

RẊẊ(t1, t2) =
∂2RXX(t1, t2)

∂t1∂t2
(6.15)

From the above equation, it can be shown that a necessary and sufficient condition for a process to be

differentiable is that the autocorrelation function RXX(t1, t2) has a continuous mixed second derivative

on the diagonal t1 = t2. If X(t, ω) is stationary, it follows from Eq.(6.12) that its derivative is a zero-mean

process. Using τ = t2 − t1, one gets:

RXẊ(τ) = ṘXX(τ), RẊẊ(τ) = −R̈XX(τ) (6.16)

which shows that the process Ẋ(t) is weakly stationary if X(t) is weakly stationary. From Eqs.(6.8),(6.16)

one gets:

RXẊ(0) ≡ E
[

X(t) Ẋ(t)
]

= 0 (6.17)

which means that there is no correlation between a stationary process and its derivative process at any

point in time t.
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2.3.3 Ergodic and mixing processes

Let us define the time-average of a trajectory as follows:

〈x(t)〉 = lim
T→+∞

[

1

T

∫ T

0

x(t)dt

]

(6.18)

A stationary random process is said ergodic in the mean if its time-average is equal to its mean value,

say µX , for any trajectory:

Ergodicity in the mean: 〈x(t)〉 = µX = E [X(t, ω)] (6.19)

Ergodicity in correlation is defined as:

〈x(t+ τ)x(t)〉 = lim
T→+∞

[

1

T

∫ T

0

x(t+ τ)x(t)dt

]

= RXX(τ) (6.20)

In essence, ergodicity deals with determining the statistics of a process X(t, ω) from a single trajectory.

It is of considerable practical use in estimating statistical parameters from one or a few sufficiently

long records of the process. The obtained accuracy will depend on the duration T of available records.

Ergodicity (which implies stationarity) is often assumed to hold in the analysis of stochastic records

unless there is evidence of the contrary.

A random process is said to be mixing if random variables Xt1(ω), Xt2(ω) become independent when

τ = t2 − t1 → ∞. As far as stationary processes are concerned, this implies that the autocovariance

function tends to zero when τ →∞.

2.3.4 Vector random processes

A vector random process X(t, ω) is a vector whose components {X1(t, ω),X2(t, ω), . . . , Xn(t, ω)} are

scalar random processes. The definitions in Section 2.2 for scalar processes may be generalized to vector

processes. The covariance matrix C is defined by the following entries:

Ci,j(t1, t2) = Cov [Xi(t1),Xj(t2)]

=

∫ ∞

−∞

∫ ∞

−∞
(xi − µXi

(t1))
(

xj − µXj
(t2)

)

fXiXj
(xi, xj ; t1, t2) dxi dxj

(6.21)

When i = j, the entry is the autocovariance function of process Xi(t, ω) ; when i 6= j, Ci,j(t1, t2) is called

the cross-covariance function. Finally, the cross-correlation coefficient matrix R is defined by:

Ri,j(t1, t2) = ρ [Xi(t1),Xj(t2)] =
Cov [Xi(t1),Xj(t2)]

σXi
(t1) · σXj

(t2)
(6.22)

2.4 Poisson processes

Point processes appear in numerous situations when similar events occur randomly in time (computer

connections to a server, customers arriving at a booth, etc.). In structural reliability, they allow one to

count crossings of a limit state surface.

Let us denote by Tn(ω), n ≥ 1 the time of n-th occurrence of the event under consideration. It is assumed

that:

0 < T1(ω) < · · · < Tn(ω) (6.23)
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Figure 6.3: Realizations of a Poisson counting process

The counting function N(t, ω) of the point process is defined as the number of events occuring in the

time interval ]0, t]:

N(t, ω) = sup {n : Tn(ω) ≤ t} (6.24)

A trajectory of such a process is given in Figure 6.3.

The point process is called homogeneous Poisson process if and only if the following conditions are

satisfied:

• ∀ s < t, Nt(ω)−Ns(ω) is a Poisson random variable of parameter λ(t− s). The positive real value

λ is the intensity of the process;

• the random variables Nt1(ω), Nt2(ω)−Nt1(ω), . . . , Ntk
(ω)−Ntk−1

(ω) are independant.

It follows that the probability function of Nt(ω) reads:

P (Nt(ω) = n) = e−λt (λt)
n

n!
(6.25)

In other words, the probability of having one occurrence within [t, t+ ∆t] is equal to λ∆t (where ∆t is

a small time interval), and the probability of having more than one occurrence within this time interval

is negligible with respect to ∆t (the process is said regular).

The mean number of occurrences E [N(0, t)] is equal to λt. Thus λ may be interpreted as the mean rate

of occurrence per unit time. It is easy to show that the time of first occurrence T1(ω) as well as the

subsequent inter-arrival times Tk(ω) − Tk−1(ω), k ≥ 2 have an exponential distribution with parameter

1/λ:

P (T1 ≤ t) = 1− e−λt (6.26)

As the sum of n such independent variables, the time elapsed before the n-th occurrence, Tn(ω), has a

Gamma distribution with parameters n and 1/λ (mean value nλ, variance nλ2). Non homogeneous Pois-

son processes can be defined by replacing λ by a function λ(t). In this case, the term λt in Eqs.(6.25),(6.26)

should be replaced by
∫ t

0
λ(τ) dτ .

2.5 Rectangular wave renewal processes

Rectangular wave renewal processes are defined as processes whose amplitude is stepwise constant and

changing (i.e. making jumps) in a random way at random renewal points in time. They are characterized

by:
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• the probability distribution function of their amplitude, say fS(s),

• the probability distribution function of their inter-arrival times.

It is usually assumed that the renewals follow a Poisson process. Thus the specification of the inter-

arrival time is limited to the jump rate λ, which is the mean rate of renewals. It follows that the renewals

are supposed to occur independently of each other. For numerical computation, it is assumed that

rectangular wave processes jump from a random value S(t) to another value S(t+ ∆t) without returning

to zero. Rectangular wave renewal processes are regular processes. The probability of occurrence of any

two or more renewals in a small time interval ∆t is thus negligible.

Non stationary rectangular wave renewal processes can be defined either using time-dependent parameters

of the amplitude distribution or time-dependent jump rates. Vector rectangular wave renewal processes

are vectors whose components are rectangular wave renewal processes defined as above. It is usually

assumed that all components are independent.

Rectangular wave renewal processes are used to model occupancy loads, traffic loads, etc. A typical

example of a trajectory of such a process is sketched in Figure 6.4.

Figure 6.4: Example of a trajectory of a rectangular renewal wave process

2.6 Gaussian processes

A scalar process X(t, ω) is Gaussian if any random vector {Xt1(ω), . . . ,Xtn
(ω)} is a Gaussian vector.

Practically, it is defined by:

• its mean function µX(t),

• either its autocorrelation function RXX(t1, t2), its covariance function CXX(t1, t2) or both its vari-

ance function σ2
X(t) and its autocorrelation coefficient function ρ(t1, t2).

The marginal probability density function is given by:

fX (x, t) =
1√

2πσX (t)
exp

[

−1

2

(

x− µX(t)

σX (t)

)2
]

(6.27)

Gaussian processes are differentiable if and only if their autocorrelation function is twice differentiable

at t1 = t2. Stationary Gaussian processes are completely defined by their mean µX , variance σ2
X and

autocorrelation coefficient function ρ(τ). The condition for differentiability reduces to the existence of

ρ′′(0). The derivative process Ẋ(t, ω) has zero mean, and its variance is:

σ2
Ẋ

= −σ2
X ρ′′(0) (6.28)
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Standardized Gaussian processes are of interest in solving time-variant reliability problems. They are

defined as:

U(t) =
X(t)− µX(t)

σX(t)
(6.29)

Obviously they have zero mean and unit standard deviation. The cycle rate of a Gaussian process is

defined as:

̟2
0(t) =

∂2ρ(t1, t2)

∂t1∂t2

∣

∣

∣

∣

t=t1=t2

(6.30)

In the stationary case, the cycle rate becomes constant and reduces to:

̟2
0 = −ρ′′(0) ̟0 = σẊ/σX (6.31)

Typical shapes for the autocorrelation coefficient function have been already shown in Chapter 2, Section 4

(see Figure 2.2). They respectively correspond to the following equations (ℓ is referred to as the correlation

length):

• Type A:

ρA(τ) = exp
(

−
∣

∣

∣

τ

ℓ

∣

∣

∣

)

(6.32)

• Type B:

ρB(τ) = exp

(

−
(τ

ℓ

)2
)

(6.33)

• Type C:

ρC(τ) =
sin(τ/ℓ)

τ/ℓ
(6.34)

A random process of type A is clearly not differentiable since the autocorrelation coefficient function

is not differentiable in τ = 0. In contrast, type B and C processes are differentiable, and their cycle

rate respectively read ωB =
√

2/ℓ and ωC = 1/
√

3 ℓ. Typical trajectories of such Gaussian processes

are given in Figure 6.5 for various autocorrelation coefficient functions (same correlation length ℓ = 1,

t ∈ [0, 50]). These trajectories have been obtained from the EOLE expansion of the related random

processes (Chapter 2, Section 4.3.3). The “Type A” trajectory is clearly less smooth than the other ones.

The cycle rate may be interpreted as a dominant frequency of the trajectories: this is visually confirmed

by the fact that the “Type B” curve (ωB =
√

2) oscillates more than the “Type C” curve (ωC = 1/
√

3).

3 Time-variant reliability problems

3.1 Problem statement

Let us denote by X(t, ω) the set of random variables R = {Rj(ω), j = 1, . . . , p} and one-dimensional

random processes S = {Sj(t, ω), j = p+ 1, . . . , p+ q} describing the randomness in the geometry, ma-

terial properties and loading of the system under consideration. Let us denote by g(t,X(t, ω)) the time

dependent limit state function associated with the reliability analysis. The failure domain (resp. safe

domain) at time instant t is denoted by Df (t) (resp. Ds(t)), and the limit state surface by ∂D. Denoting

by [t1,t2] the time interval of interest, the probability of failure of the structure within this time interval

is defined as follows:

Pf (t1, t2) = P (∃ t ∈ [t1, t2] : X(t, ω) ∈ Df (t))

= P (∃ t ∈ [t1, t2] : g (t,X(t, ω)) ≤ 0)
(6.35)
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Figure 6.5: Trajectories of Gaussian random processes for various autocorrelation coefficient functions

(µX = 5 , σX = 1 , ℓ = 1)

This definition corresponds to the probability of being in the failure domain at least at one point in time

within the interval under consideration. It is also called cumulative probability of failure in the literature.

Let us consider now a structure over a time interval [0,T]. Let us denote by T1(ω) the first passage time

to the failure domain Df (t) (conventionnally set equal to zero if the structure already fails at t = 0). This

quantity is sometimes referred to as the failure time. Let us denote by FT1
(t) its cumulative distribution

function. It is clear form Eq.(6.35) that:

FT1
(t) ≡ P (T1 ≤ t) = Pf (0, t) (6.36)

Thus the cumulative probability of failure is closely related to the distribution of the first passage time.

On the other hand, the so-called point-in-time (or instantaneous) probability of failure is defined as

follows:

Pf,i(t) = P (g(t,X(t, ω)) ≤ 0) (6.37)

In Eq.(6.37), time is treated as a dummy parameter. Thus the point-in-time probability of failure

is computed by fixing time in all the functions appearing in the limit state function and by replacing

the random processes by the corresponding random variables, which formally rewrites, using the above

notation:

Pf,i(t) = P (g(t, R(ω), St(ω)) ≤ 0) (6.38)

The standard time-invariant reliability methods described in Chapter 3, Section 3 may be used to evaluate

Eq.(6.38). As may be expected from the above definitions, the cumulative probability of failure is much

more complex to compute than the instantaneous probability of failure. There is a remarkable exception

to this general situation, which is addressed in the next paragraph.

3.2 Right-boundary problems

A special class of time-variant problems is defined by the following assumptions:
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• the limit state function does not depend explicitly on random processes (such as Gaussian, renewal

wave, etc.), but only on random variables and deterministic functions of time. The limit state

function is denoted by g(t,X(ω)) in this case.

• the limit state function is monotonically decreasing in time whatever the realizations of the random

variables. For each realization, the minimum value of g(t,X(ω0)) over a time interval [t1,t2] is

attained for t = t2, thus the expression right-boundary problems.

From these assumptions it comes:

Pf (t1, t2) = 1− P (g (t,X(ω)) > 0 ∀ t ∈ [t1, t2])

= 1− P (g (t2,X(ω)) > 0)

= Pf,i (t2)

(6.39)

It clearly appears that the time-variant problem reduces to a time-invariant analysis at the end of the

time interval. This situation is of crucial importance in practice: in design and assessment of structures,

static calculations are often carried out. In an uncertain context, the loading is then represented by

random variables (whose PDF is for instance determined by the extreme value theory) instead of random

processes. When degradation of material is taken into account, deterministic functions of time model the

kinetics of the phenomenon. These functions are usually monotonically decreasing for physical reasons

(e.g. the crack length, the size of corroded zones increases in time, etc.). Thus in numerous applications,

Eq.(6.39) will apply.

3.3 The outcrossing approach

When random processes enter the definition of the limit state function, it is not possible anymore to

compute the probability of failure Pf (t1, t2) directly because the instant t for which the limit state function

becomes negative (first passage time) is random. This point is illustrated in Figure 6.6, where failure

corresponds to the outcrossing of a threshold a by a scalar random process X(t, ω) (the three realizations

of the random process correspond to three different first-passage times denoted by T
(1)
1 , T

(2)
1 , T

(3)
1 ).

Figure 6.6: Examples of trajectories and outcrossing of a threshold by a scalar process X(t, ω)

An alternative method called outcrossing approach has been proposed to bypass the difficulty.
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3.3.1 Bounds to the probability of failure

A simple lower bound to the probability of failure has been derived by Shinozuka (1964). First remark

that:

Pf (t1, t2) = 1− P (g (t,X(t, ω)) > 0 ∀ t ∈ [t1, t2]) (6.40)

Note that:

P (g (t,X(t, ω)) > 0 ∀ t ∈ [t1, t2]) = P





⋂

t∈[t1,t2]

g (t,X(t, ω)) > 0





≤ P (g (t0,X(t0, ω)) > 0) ≡ 1− Pf,i(t0)

(6.41)

where the latter bound holds for any t0 ∈ [t1, t2]. This rewrites:

1− P

(

g (t,X(t, ω)) > 0 ∀ t ∈ [t1, t2]
)

≥ Pf,i(t0) ∀ t0 ∈ [t1, t2] (6.42)

From Eqs.(6.40),(6.42), it follows:

Pf (t1, t2) ≥ max
t∈[t1,t2]

Pf,i(t) (6.43)

This lower bound is however often crude in practice. Let us now consider the event F = {∃ t ∈ [t1, t2] :

X(t) ∈ Df (t)}. Its complementary reads:

F̄ = {∀ t ∈ [t1, t2] : X(t) ∈ Ds(t)} (6.44)

which is equivalent to:

F̄ = {X(t1) ∈ Ds(t1)} ∩
{

N+(t1, t) = 0
}

(6.45)

where N+(t1, t) is the number of outcrossings2 from the safe domain through the limit state surface

within the time interval ]t1, t] (see Figure 6.7). Consequently, its complementary event reads:

F = {X(t1) ∈ Df (t1)} ∪
{

N+(t1, t) > 0
}

(6.46)

Figure 6.7: Evolution in time of the number of outcrossings

Using this notation, Eq.(6.35) rewrites:

Pf (t1, t2) = P
(

{g(t1,X(t1)) ≤ 0} ∪
{

N+(t1, t2) > 0
})

(6.47)

2The notation ω for describing the random dimension will be discarded from now on unless necessary.
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As the events in the union are not necessarily disjoint, the probability of their union can be upper bounded

by the sum of their respective probabilities. Hence:

Pf (t1, t2) ≤ Pf,i(t1) + P
(

N+(t1, t2) > 0
)

(6.48)

Moreover:

P
(

N+(t1, t2) > 0
)

=

∞
∑

k=1

P
(

N+(t1, t2) = k
)

≤
∞
∑

k=0

k P
(

N+(t1, t2) = k
)

≤ E
[

N+(t1, t2)
]

(6.49)

where E [N+(t1, t2)] is the mean number of outcrossings in [t1,t2]. Using Eqs.(6.40),(6.48), (6.49), one

finally gets the following bounds to the probability of failure:

max
t∈[t1,t2]

Pf,i (t) ≤ Pf (t1, t2) ≤ Pf,i (t1) + E
[

N+(t1, t2)
]

(6.50)

3.3.2 Outcrossing rate

Let us consider the point process defined by the crossings of a surface S by a random process S(t), and

the associated counting function N+(t1, t), t1 < t. The outcrossing rate is defined by:

ν+(t) = lim
∆t→0

P (N+(t, t+ ∆t) = 1)

∆t
(6.51)

This quantity is interpreted as the probability of having one crossing in an infinitesimal interval ]t, t+ ∆t]

divided by ∆t. This only makes sense if the counting process is regular, i.e. if the probability of having

more than one outcrossing in ]t, t+ ∆t] is negligible:

lim
∆t→0

P (N+(t, t+ ∆t) > 1)

∆t
= 0 (6.52)

Due to this regularity, the quantity ν+(t)∆t = P (N+(t, t+ ∆t) = 1) is also equal to E [N+(t, t+ ∆t)].

As the counting function is additive in time by definition, one finally gets the mean number of outcrossings

within a time interval [t1, t2]:

E
[

N+(t1, t2)
]

=

∫ t2

t1

ν+(t) dt (6.53)

In the context of reliability analysis, the process under consideration will be the limit state function

itself, i.e. g(t,X(t, ω)) and the surface S will be the zero level. Having one outcrossing in [t, t+ ∆t]

corresponds to being in the safe domain at time t and in the failure domain at time t+∆t. Thus Eq.(6.51)

may be also rewritten as:

ν+(t) = lim
∆t→0

P ({g(t,X(t, ω)) > 0} ∩ {g(t+ ∆t,X(t+ ∆t, ω)) ≤ 0})
∆t

(6.54)

This expression will be taken advantage of in the sequel. As a conclusion, the evaluation of the upper

bound to the probability of failure reduces to computing the outcrossing rate through the limit state

surface and integrating it in time.

Stationary time-variant reliability problems deserve special attention. They correspond to the following

assumptions:
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• the random processes {Sj(t, ω), j = p+ 1, . . . , p+ q} are stationary processes;

• there is no direct time dependence in the limit state function, i.e. it can be formally written as

g(R,S(t, ω))

In this case, the point-in-time reliability problem and the outcrossing rate are independent of the time

instant. Thus Eqs.(6.53),(6.50) reduce to:

E
[

N+(t1, t2)
]

= ν+ · (t2 − t1) (6.55)

Pf,i(t1) ≤ Pf (t1, t2) ≤ Pf,i (t1) + ν+ · (t2 − t1) (6.56)

4 Analytical results for outcrossing rates

As seen from the previous section, the computation of the outcrossing rate of random processes through

thresholds (one refers to upcrossing rate in this particular case) or surfaces is of crucial importance.

In this section, we review some important analytical results for the differentiable Gaussian processes.

Note that in the context of reliability analysis, the results presented below only apply when the failure

is defined by the crossing of a random process through a deterministic surface, i.e. when there are no

R-random variables in the problem.

4.1 Rice’s formula

Let us consider a scalar differentiable (not necessarily Gaussian) random process X (t, ω) and a determin-

istic, possibly time varying threshold a(t). The outcrossing rate of X (t, ω) has been defined in Eq.(6.51).

According to Figure 6.8, an outcrossing occurring in [t, t+ ∆t] requires that:

• the slope of the trajectory ẋ(t) is greater than that of the threshold ȧ(t);

• the trajectory at t is in the neighbourhood of the threshold, more precisely no further than the

distance ẋ(t)∆t, to a(t+ ∆t).

Figure 6.8: Outcrossing of a scalar differentiable process
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Thus:

ν+(t) = lim
∆t→0

P (N+(t, t+ ∆t) = 1)

∆t

= lim
∆t→0

P

({

Ẋ(t) ≥ ȧ(t)
}

∩
{

a(t+ ∆t)−∆t Ẋ(t) ≤ X(t) ≤ a(t)
})

∆t

(6.57)

Denoting by fXẊ(x, ẋ) the joint probability density function of the process and its derivative, Eq.(6.57)

becomes:

ν+(t) = lim
∆t→0

∫ ∞

ȧ(t)

∫ a(t)

a(t+∆t)−∆t ẋ

1

∆t
fXẊ(x, ẋ) dx dẋ (6.58)

The lower bound of the inner integral may be rewritten as a(t) − ∆t(ẋ − ȧ(t)). Using the mean value

theorem and the limit passage ∆t → 0, the inner integral becomes (ẋ− ȧ(t)) fXẊ(a(t), ẋ). This finally

leads to the so-called Rice’s formula (Rice, 1944, 1945):

ν+(t) =

∫ ∞

ȧ(t)

(ẋ− ȧ(t)) fXẊ (a(t), ẋ) dẋ (6.59)

4.2 Application of Rice’s formula to Gaussian processes

In case of a stationary process X(t, ω) and constant threshold, Eq.(6.59) becomes:

ν+(a) =

∫ ∞

0

ẋ fXẊ (a, ẋ) dẋ (6.60)

If the process is furthermore Gaussian (mean value µX , standard deviation σX), its derivative process

Ẋ(t, ω) is also Gaussian (zero mean value, standard deviation σẊ) and independent from X(t, ω). Thus

the joint PDF:

fXẊ (x, ẋ) =
1

σX

1

σẊ

ϕ

(

x− µX

σX

)

ϕ

(

ẋ

σẊ

)

(6.61)

By substituting Eq.(6.61) in Eq.(6.60), the outcrossing rate of X (t, ω) through threshold a eventually

reads:

ν+ (a) =
1√
2π

σẊ

σX
ϕ

(

a− µX

σX

)

(6.62)

Introducing the cycle rate ̟0 = σẊ/σX (see Eq.(6.31)), the latter also reads:

ν+ (a) =
̟0√
2π
ϕ

(

a− µX

σX

)

(6.63)

Hence the mean number of outcrossing in the time interval [t1, t2]:

E
[

N+ (t1, t2)
]

= (t2 − t1)
̟0√
2π
ϕ

(

a− µX

σX

)

(6.64)

Introducing the standardized threshold

b(t) =
a(t)− µX(t)

σX(t)
(6.65)

which reduces to a constant b in the stationary case, Eq.(6.64) may be rewritten as:

E
[

N+ (t1, t2)
]

= (t2 − t1)
̟0√
2π
ϕ (b) (6.66)
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If the threshold a(t) varies in time, substituting Eq.(6.61) in Eq.(6.59) yields:

ν+(t) =

∫ ∞

ȧ(t)

(ẋ− ȧ(t)) 1

σX

1

σẊ

ϕ

(

a(t)− µX

σX

)

ϕ

(

ẋ

σẊ

)

dẋ (6.67)

Using results by Owen (1980) and ̟0 = σẊ/σX , the latter integral reduces to:

ν+(t) = ̟0 ϕ

(

a(t)− µX

σX

)

Ψ

(

ȧ(t)

σẊ

)

(6.68)

where Ψ(x) = ϕ(x)− xΦ(−x). Using the standardized notation, this result may also be written as:

ν+(t) = ̟0 ϕ (b(t)) Ψ

(

ḃ(t)

̟0

)

(6.69)

The mean number of outcrossing then reads:

E
[

N+ (t1, t2)
]

=

∫ t2

t1

̟0 ϕ (b(t)) Ψ

(

ḃ(t)

̟0

)

dt (6.70)

If the process is non stationary, the parameters µX , σX , σẊ ,̟0 becomes time dependent. However the

derivations in the previous paragraph still hold and the mean number of outcrossings reads (Cramer and

Leadbetter, 1967):

E
[

N+ (t1, t2)
]

=

∫ t2

t1

̟0(t) ϕ (b(t)) Ψ

(

ḃ(t)

̟0(t)

)

dt (6.71)

4.3 Belayev’s formula

The determination of the outcrossing rate of a Gaussian differentiable vector process X(t, ω) through a

time varying limit state surface by means of Eq.(6.57) requires introducing some additional notation. Let

S(t) be the time-variant limit state surface under consideration, whose outwards normal at point x is

n(x, t). Let v(x, t) be the velocity of the limit state surface, and v⊥(x, t) = v(x, t) · n(x, t) its normal

component. In analogy to Rice’s formula, an outcrossing of the failure surface within time interval

[t, t+ ∆t] implies that:

• the derivative vector process has such a direction and intensity that it can cross a moving surface

with velocity v(x, t). By introducing the projection of the derivative process Ẋ(t, ω) onto the

normal to S(t):

Ẋ⊥(t) = n(x, t) · Ẋ(t) (6.72)

this condition writes for a given trajectory:

ẋ⊥(t) > v⊥(x, t) (6.73)

• the trajectory x(t) is in a layer L (S(t)) defined around the failure surface S(t), whose thickness is

(ẋ⊥(t)− v⊥(x, t)) ·∆t

These conditions are sketched in Figure 6.9. With the above notation, the outcrossing rate reads:

ν+ (t) = lim
∆t→0

P

(

{X(t) ∈ L (S(t))} ∩
{

Ẋ⊥(t) > v⊥(x, t)
} )

∆t
(6.74)
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Figure 6.9: Outcrossing of a differentiable vector process

As X(t) is a Gaussian vector, its derivative as well as the projection of the latter onto n (x, t) are also

Gaussian. The above equation thus rewrites:

ν+ = lim
∆t→0

1

∆t

[

∫

L(S(t))

∫

ẋ⊥(t)>v⊥(x,t)

ϕn+1 (x, ẋ⊥) dx dẋ⊥

]

= lim
∆t→0

1

∆t

[

∫

S(t)

∫

ẋ⊥(t)>v⊥(x,t)

∆t (ẋ⊥(t)− v⊥(x, t))ϕn+1 (x, ẋ⊥) ds(x) dẋ⊥

] (6.75)

where ds(x) represents the infinitesimal surface element on S(t). Thus the expression for the outcrossing

rate:

ν+ (t) =

∫

S(t)

∫

ẋ⊥(t)>v⊥(x,t)

(ẋ⊥(t)− v⊥(x, t))ϕn+1 (x, ẋ⊥) ds(x) dẋ⊥ (6.76)

The latter equation is the Belayev’s formula (Belayev, 1968) for Gaussian vector processes (a general

expression also exists when X(t) is not Gaussian). The practical computation of this integral requires

determining the statistics of the projection Ẋ⊥(t) and a so-called scalarization of the problem. The details

of the computation are out of the scope of the present document (see Rackwitz (2004) for details).

In the stationary case, the failure surface is constant and its normal velocity v⊥(x) is equal to 0. Moreover,

the normal derivative process Ẋ⊥ is independent on the initial vector process X. Thus the latter equation

reduces to:

ν+ =

∫

S(t)

∫

ẋ⊥(t)>0

ẋ⊥ ϕn+1 (x, ẋ⊥) ds(x) dẋ⊥

≡ E∞
0

[

Ẋ⊥
]

∫

S(t)

ϕn (x) ds(x)

(6.77)

4.4 Another estimation of the probability of failure

In the various cases presented so far in this section, the randomness in the problem lies only in the scalar

or vector random process S under consideration. In this specific case, the occurrence of outcrossing of

a deterministic surface may be considered as a Poisson process, provided the process S is mixing. The
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probability of failure associated to the outcrossing event, which is the CDF of the first passage time to

the failure domain reads in this case:

FT (t) = Pf (0, t) ≈ 1− e−ν+ t (6.78)

where the intensity of the Poisson process is nothing but the outcrossing rate ν+ in this case. The latter

equation can be slightly modified in order to take into account the fact that the system may fail at t = 0

( see Madsen and Tvedt (1990); Schall et al. (1991)):

Pf (0, t) ≈ Pf,i(0) + (1− Pf,i(0))

(

1− exp

[ −ν+ t

1− Pf,i(0)

])

(6.79)

This result does not apply anymore when R-variables are present in the problem statement. Indeed, the

compound process defined by g(t,R,S(t)) is no more mixing in this case, due to the non ergodicity of

the R-variables. Other arguments have to be devised to solve the problem in this general case. This is

the aim of the next section.

5 Asymptotic method

5.1 Introduction

In the previous section, expressions for the outcrossing rate and related mean number of outcrossings have

been derived in the case when the thresholds (or more generally the limit state surface) are deterministic,

i.e. the unique source of randomness taken into account so far is that of the random processes. However,

in real problems, other sources of randomness (including those related to the resistance of the structure)

have to be dealt with in a common framework. Moreover, the problem of efficiently integrating the

outcrossing rate with respect to time (Eqs.(6.70),(6.71)) has not been addressed so far.

The so-called asymptotic method (AsM) provides a framework that allows the analyst to solve both

problems in an efficient manner. In order to make a link with the existing literature on the topic (e.g.

Rackwitz (1998)), the following notation due to Schall et al. (1991) is introduced. The randomness in

the problem is modelled by means of three types of random variables, namely:

• R is a vector of random variables as in time-invariant reliability. Its distribution parameters may be

deterministic functions of time. This vector is used to model resistance variables. These variables

are said non-ergodic;

• Q denotes stationary and ergodic vector sequences. Usually they are used to model long term

variations in time (traffic states, sea states, wind velocity regimes, etc.). Q-variables may also

determine the fluctuating parameters of the random processes described next;

• S is a vector random process whose parameters can depend on Q and/or R. Its components are not

necessarily stationary. Usually they are used to describe short-term fluctuations of the loading3.

The closed-form formulæ derived in the previous section can be used to compute the conditional out-

crossing rate ν+(t| r, q). The conditional mean number of outcrossings reads:

E
[

N+(t1, t2) |r, q
]

=

∫ t2

t1

ν+ (t | r, q ) dt (6.80)

3Apart from the Q-variables, this notation is identical to what was already introduced in Section 3.1 of this report in

page 123.
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The upper bound to the probability of failure is obtained by taking the expectation of Eq.(6.50) with

respect to the R/Q variables:

Pf (t1, t2) ≤ P (g (t1,R,Q,S(t1)) ≤ 0) + ER,Q

[

E
[

N+(t1, t2)|r, q
]]

(6.81)

As a whole, three integrations are required with respect to R and Q- variables and time. The time

integration is carried out approximately using Laplace integration. The expectation operation with

respect to R and Q is also carried out using asymptotic results for multidimensional integrals (Breitung,

1988), see also Rackwitz (1998). In order to get a flavor of how asymptotic Laplace integration works,

the principles are recalled for the one-dimensional case in the next paragraph.

5.2 Asymptotic Laplace integration

5.2.1 Introduction

The Laplace integration is an asymptotic method used to approximate integrals of the following type:

I =

b
∫

a

h(t) exp (−λf(t)) dt (6.82)

under the following conditions:

• λ is a positive parameter and possibly a large number,

• f(t) is twice differentiable, unimodal and strictly positive over [a, b],

• h(t) is differentiable and strictly positive over [a, b].

The calculation of the integral is performed separately whether f is a monotonic function in [a, b] (bound-

ary point case) or f has a minimum in ]a, b[ (interior point case).

5.2.2 “Boundary point” case

Suppose that f is monotonically increasing over [a, b]. Then the most important contribution to the

integral corresponds to values of t close to a, which is the point where f(t) attains its minimum within

the interval. Consequently, h(t) is replaced by h(a) and f(t) by its Taylor series expansion around a:

f(t) = f(a) + (t− a)ḟ(a) + o(t− a) (6.83)

Substituting for Eq.(6.83) in Eq.(6.82) yields after basic algebra:

I ≈ h(a) exp (−λf(a))
1− exp

(

−λ (b− a) ḟ(a)
)

λḟ(a)
(6.84)

A similar reasoning holds in case f is strictly decreasing by using a Taylor series expansion around b.

Finally, denoting by t∗ the critical point (i.e. a or b, wherever the integrand is maximal), the asymptotic

integral reads in the boundary point case:

I ≈ h(t∗) exp (−λf(t∗))
1− exp

(

−λ (b− a)
∣

∣

∣ḟ(t∗)
∣

∣

∣

)

λ
∣

∣

∣ḟ(t∗)
∣

∣

∣

(6.85)
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5.2.3 “Interior point” case

Suppose now that f has a minimum in a single point t∗ in ]a,b[, i.e. ḟ(t∗) = 0. Then the most important

contribution to the integral corresponds to values of t close to t∗. Consequently, h(t) is replaced by h(t∗)

and f(t) by its Taylor series expansion around t∗:

f(t) ≈ f(t∗) +
1

2
(t− t∗)2f̈(t∗) + o(t− t∗)2 (6.86)

After basic algebra, the integral in Eq.(6.82) reduces to:

I ≈ h(t∗) exp (−λf(t∗))

√

2π

λf̈(t∗)

[

Φ

(

(b− t∗)
√

λf̈(t∗)

)

− Φ

(

(a− t∗)
√

λf̈(t∗)

)]

(6.87)

where Φ is the standard normal CDF.

5.3 Application to scalar Gaussian differentiable processes

Eq.(6.71) rewrites in this case:

E
[

N+ (t1, t2)
]

=

∫ t2

t1

̟0(t)√
2π

Ψ

(

ḃ(t)

̟0(t)

)

exp
(

−b2(t)/2
)

dt (6.88)

This is a Laplace integral of the form (6.82) provided:

• λ=1

• f(t) = b2(t)/2

• h(t) =
̟0(t)√

2π
Ψ

(

ḃ(t)

̟0(t)

)

Two formulæ can be obtained according to the position of the critical point t∗. In the“boundary point”

case (t∗ = t1, t2), the mean number of outcrossings reads:

E
[

N+(t1, t2)
]

≈ ̟0(t
∗)Ψ

(

ḃ(t∗)

̟0(t∗)

)

ϕ (b(t∗))





1− exp
(

−b(t∗)
∣

∣

∣ḃ(t∗)
∣

∣

∣ (t2 − t1)
)

b(t∗)
∣

∣

∣ḃ(t∗)
∣

∣

∣



 (6.89)

In the “interior point” case (t1 < t∗ < t2) the first order derivative of the threshold is zero at the critical

point. Hence the expansions:

b2(t) ≈ b2(t∗) + b(t∗) b̈(t∗) (t− t∗)2 + o(t− t∗)2

ḃ(t) ≈ b̈(t∗) (t− t∗) + o(t− t∗)
(6.90)

and the mean number of outcrossings is approximated by:

E
[

N+(t1, t2)
]

≈
√

2π̟0(t
∗) ϕ (b(t∗))

√

b(t∗) b̈(t∗)

×
[

√

1 + γ2

√
2π

Φ
(

u
√

1 + γ2
)

+ γ ϕ (u)Φ (−γu)
]

√
b(t∗)b̈(t∗)(t2−t∗)

√
b(t∗)b̈(t∗)(t1−t∗)

(6.91)

where γ(t∗) = 1
̟0(t∗)

√

b̈(t∗)
b(t∗) .
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5.4 Outcrossing for general surfaces defined in the R-Q-S-space

The results derived so far apply in the case when the randomness is limited to a vector process S. In real

problems, other R and Q random variables are usually present in the model. The above results may be

used conditionally to the values of r and q. Thus the mean number of outcrossings reads:

E
[

N+(t1, t2)
]

= ER,Q

[

E
[

N+(t1, t2 |r, q )
]]

=

∫ t2

t1

ER,Q

[

ν+ (t|r, q)
]

dt (6.92)

As for time integration, the expectation operation, i.e. the integration over r, q in the above equation

is performed by asymptotic (now multidimensional) formulæ. As explained in Rackwitz (1998), this

reduces to computing the design point in the R-Q-S-space by asymptotic SORM and the reliability

index accordingly.

5.5 Conclusion

The asymptotic method (AsM) relies upon the use of Laplace integrals to carry out approximately the

time integration of the outcrossing rate as well as the expectation operation with respect to R- and Q-

variables.

The full package is implemented in a commercial software called COMREL-TV (RCP Consult, 1998). To

the author’s knowledge, there is no other comprehensive implementation of this asymptotic theory. This

may explain why the time-variant reliability methods are not used much in industrial applications yet.

The PHI2 method presented in the next section is an interesting alternative since it allows to solve time-

variant reliability problems using any time-invariant reliability software at hand without implementing

specific algorithms.

6 System reliability approach: the PHI2 method

6.1 Introduction

The so-called PHI2 method has been developed by Andrieu-Renaud (2002); Andrieu-Renaud et al. (2004).

The original idea can be found in an early paper by Hagen (1992) and has been subsequently used in

various forms by Li and Der Kiureghian (1995); Der Kiureghian and Li (1996); Vijalapura et al. (2000);

Der Kiureghian (2000) in the context of random vibrations.

The main idea is to compute directly the outcrossing rate from Eq.(6.54) by replacing the limit operation

by a finite difference scheme:

ν+(t) ≈ P ({g(t,X(t, ω)) > 0} ∩ {g(t+ ∆t,X(t+ ∆t, ω)) ≤ 0})
∆t

(6.93)

The numerator of the above equation is nothing but the probability of failure of a two-component parallel

system. Using FORM for systems (Ditlevsen and Madsen, 1996, chap. 14), it may be approximated by:

ν+(t) ≈ Φ2(β(t),−β(t+ ∆t), ρ(t, t+ ∆t))

∆t
(6.94)

In this expression, Φ2 stands for the binormal cumulative distribution function (thus the name “PHI2”

for the method), β(t) (resp. β(t+ ∆t)) is the point-in-time reliability index computed by FORM at time

instant t (resp. t + ∆t), and ρ(t, t + ∆t) is the dot product of the α-vectors computed in each FORM

analysis.
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As shown in Andrieu et al. (2002), the time increment ∆t has to be selected carefully. Indeed, a too

large time increment would lead to an inaccurate estimation of the limit value. In contrast, a too small

time increment corresponds to a correlation coefficient ρ(t, t+ ∆t) close to −1, which leads to numerical

instabilities.

The rigourous expression for the limit value in Eq.(6.54) has been recently derived in Sudret (2005a,

2007). It is based on a Taylor series expansion of the various terms appearing in that equation, which

leads to a closed-form expression for the outcrossing rate. This derivation is summarized in Section 6.2.

The “user’s manuel” to the PHI2 method is then presented in Section 6.3. The time-variant problem is

cast as a set of two time-invariant FORM analyses, and the analytical expression for the outcrossing rate

is given a computational practical counterpart.

6.2 Analytical derivation of the outcrossing rate

Let us introduce the following function:

ft(h) = P

(

{g (t,X(t, ω)) > 0} ∩ {g (t+ h,X(t+ h, ω)) ≤ 0}
)

(6.95)

It is obvious that ft(0) = 0 since the events in the intersection are disjoint. From this remark and

Eq.(6.54) it comes:

ν+(t) = lim
h→0

ft(h)− ft(0)

h
= ḟt(0) (6.96)

where ḟt(.) is the derivative of ft(h) with respect to h. When interpreting Eq.(6.95) as a two-component

parallel system, the use of the First Order Reliability Method (FORM) leads to:

ft(h) = Φ2(β(t),−β(t+ h), ρ(t, h)) (6.97)

where Φ2(x, y, ρ) is the binormal CDF, β(t) is the point-in-time reliability index at time instant t, β(t+h)

is the point-in-time reliability index at time instant t + h. Moreover the “correlation coefficient”ρ(t, h)

between the limit state functions at t and t+ h is defined as:

ρ(t, h) = −α(t) ·α(t+ h) (6.98)

i.e., it is the obtained by the dot product between the design point directions α(t) = ξ∗(t)/β(t) and

α(t+ h) = ξ∗(t+ h)/β(t+ h), ξ∗ being the coordinates of the design point in the standard normal space.

After some cumbersome derivations, whose details are given in Sudret (2007), the outcrossing rate finally

reads in the general (i.e. non stationary) case:

ν+(t) = ‖α̇(t)‖ ϕ(β(t))Ψ

(

β̇(t)

‖α̇(t)‖

)

(6.99)

If the problem is stationary (i.e. if β is independent of time), the above equation reduces to:

ν+ =
ϕ(β)√

2π
‖α̇‖ (6.100)

One can remark the similarity between Eqs.(6.99) and (6.69) (resp. Eqs.(6.100) and (6.66)). There is a

simple explanation for this: in the case when the upcrossing of a standard normal process U(t) (with cycle

rate ̟0 ) through a threshold b(t) is considered, it is easy to show that β(t) ≡ b(t) and ‖α̇(t)‖ ≡ ̟0,

thus the result. However, Eqs.(6.99),(6.100) are applicable to solve general problems involving R-Q-

S-variables, whereas the use of (6.66),(6.69) in this general case requires on top the use of asymptotic

integration, as presented in Section 5.2.
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6.3 Implementation of the PHI2 method using a time-invariant reliability

code

The practical implementation of the PHI2 method reads as follows:

• The point-in-time reliability index β(t) associated with the limit state function g (t,X(t, ω)) ≤ 0 is

computed after freezing t in all functions of time and replacing the random processes Sj(t, ω) by

random variables S
(1)
j , j = p+1, . . . , p+q. Classical FORM analysis corresponds to approximating

the limit state surface by the hyperplane β(t) − α(t) · ξ = 0 in the standard normal space (see

Eq.(3.48)). As a consequence, the reliability index associated with the limit state g (t,X(t, ω)) > 0

is −β(t).

• The point-in-time reliability index β(t + ∆t) associated with the limit state function g (t+ ∆t,

X(t+ ∆t, ω)) ≤ 0 is computed by another FORM analysis. It is important to notice that the

random processes Sj(t, ω) are now replaced by another set of random variables S
(2)
j that are different

from, although correlated with the S
(1)
j variables. The correlation coefficient writes:

ρ(S
(1)
j , S

(2)
j ) = ρSj

(t, t+ ∆t) (6.101)

where ρSj
(t1, t2) denotes the autocorrelation coefficient function of process Sj . The approximate

limit state surface writes β(t + ∆t) − α(t + ∆t) · ξ = 0 in the standard normal space. The corre-

sponding reliability index is β(t+ ∆t).

• The outcrossing rate is evaluated by the ”finite difference” version of Eq.(6.99) (resp.(6.100)). This

yields, in the stationary case:

ν+
PHI2 =

ϕ(β)√
2π

‖α(t+ ∆t)−α(t)‖
∆t

(6.102)

and in the non stationary case:

ν+
PHI2(t) =

‖α(t+ ∆t)−α(t)‖
∆t

ϕ(β(t))Ψ

(

β(t+ ∆t)− β(t)

‖α(t+ ∆t)−α(t)‖

)

(6.103)

For an accurate evaluation of the outcrossing rate, it is necessary to select a sufficiently small time

increment, e.g. ∆t ≤ 1% of the correlation length of the most rapidly varying component {Sj(t, ω),

j = p+ 1, . . . , p+ q}. A parametric study with respect to the size of ∆t can be found in Sudret (2007).

Eqs.(6.102)-(6.103) reveal rather insensitive to ∆t (provided it is small enough), whereas the original

version of the method (Eq.(6.94)) revealed quite unstable.

7 Application examples

Various comparisons of the PHI2 method and the AsM can be found in the literature (Andrieu-Renaud,

2002). Sudret et al. (2002) consider two analytical examples, namely a Gaussian differentiable process

crossing a random barrier that can be either constant in time or time-variant. The second case is reported

in Section 7.1 in order to show the accuracy of the PHI2 method when an analytical solution exists. The

problem of a corroded bending beam submitted to a midspan load is addressed in Andrieu-Renaud

et al. (2004); Sudret (2007) and reported in Section 7.2. In Andrieu-Renaud et al. (2004), the authors

propose an example involving a Gaussian differentiable vector process. The case of a concrete beam

submitted to creep and a random pinpoint load randomly applied during the life time of the structure is
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addressed in Andrieu et al. (2003); Andrieu-Renaud et al. (2004), where results are compared with Monte

Carlo simulation. Recently, the PHI2 method has been applied to study the time-variant reliability of

viscoplastic plates (Cazuguel et al., 2005, 2006). In naval engineering, it has been used to evaluate the

reliability of a corroded plate with non linear constitutive law submitted to a random loading (Cazuguel

and Cognard, 2006).

7.1 Analytical example

7.1.1 Problem statement

The first example under consideration is that of the outcrossing of a time-dependant random threshold

by a Gaussian stationary random process S (t, ω) (mean value µS , standard deviation σS). The auto-

correlation coefficient function of the process is denoted by ρS(t1, t2). The limit state function under

consideration in this section is:

g (X(t, ω)) = R (ω) + at− S(t, ω) (6.104)

where R(ω) is a Gaussian random variable (mean µR, standard deviation σR) and a < 0 is a constant

that can model a deterministic degradation of the random capacity R with time during the time interval

[0, T ].

7.1.2 Closed-form solution

The starting point is a closed form solution to the outcrossing rate through a linear threshold r + at

(Leadbetter & Cramer, 1967).

ν+(r, t) = ̟0 ϕ

(

r + at− µS

σS

)

Ψ

(

a

̟0σS

)

; Ψ(x) = ϕ(x)− x Φ(−x) (6.105)

Using the total probability rule, it comes:

ν+(t) =

∫

R

ν+(r, t) fR(r) dr (6.106)

where fR(r) =
1

σR
ϕ

(

r − µR

σR

)

. Thus:

ν+(t) =

∫

R

̟0 Ψ

(

a

ω0σS

)

ϕ

(

r + at− µS

σS

)

1

σR
ϕ

(

r − µR

σR

)

dr

= ̟0 Ψ

(

a

̟0σS

)

σS
√

σ2
R + σ2

S

ϕ

(

µR + at− µS
√

σ2
R + σ2

S

) (6.107)

Due to non stationarity, this outcrossing rate varies in time and has to be integrated to give the upper

bound to the mean number of outcrossings. This is done by substituting for (6.107) in Eq.(6.53):

E
[

N+(0, T )
]

=

∫ T

0

̟0 Ψ

(

a

̟0σS

)

σS
√

σ2
R + σ2

S

ϕ

(

µR + at− µS
√

σ2
R + σ2

S

)

dt

=
̟0σS

a
Ψ

(

a

̟0σS

)

[

Φ

(

µR + aT − µS
√

σ2
R + σ2

S

)

− Φ

(

µR − µS
√

σ2
R + σ2

S

)] (6.108)
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7.1.3 Numerical results

A standard normal stationary process S is chosen. The autocorrelation coefficient function is:

ρS(t1, t2) = exp

(

−
(

t2 − t1
ℓ

)2
)

(6.109)

The correlation length of the process is ℓ = 0.5, the time interval under consideration is [0, 20]. The

decaying kinetics is represented by a = −0.15.

Figure 6.10: Non stationary analytical example: g (X(t, ω)) = R (ω) + at − S(t, ω) - outcrossing rate

ν+(t) vs. time t

In a first run, the mean value of R is set equal to 20 and its standard deviation σR is set equal to 4. The

evolution of the outcrossing rate ν+(t) over the time interval is represented in Figure 6.10 using both the

analytical solution (Eq.(6.107)) and the PHI2 method (Eq.(6.103)). It appears that PHI2 provides almost

exact results all along the time interval. The asymptotic approach does not provide the outcrossing rate,

but directly its integral over the time interval. Thus it is not represented in Figure 6.10.

The cumulative probability of failure Pf (0, t) may then be evaluated from Eq.(6.50) and transformed into

a generalized reliability index βgen(0, t) = −Φ−1(Pf (0, t)). Accordingly, the lower bound PLB
f (0, t) (resp.

upper bound PUB
f (0, t)) in Eq.(6.50) may be transformed into bounds to the generalized reliability index

as follows: βb(0, t) = −Φ−1(P b
f (0, t)), b ∈ {LB,UB}. Note that the upper bound to Pf (0, t) corresponds

to a lower bound of β and vice versa. One finally gets:

βUB(0, t) ≤ βgen(0, t) ≤ βLB(0, t) (6.110)

These generalized reliability indices associated with Pf (0, t) are plotted in Figure 6.11 as a function of time

t ∈ [0, 20]. Again, PHI2 provides almost exact results whatever the value of β, whereas the asymptotic

method, which is quite accurate for large β’s (small values of time) is all the more conservative since β

is small.
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Figure 6.11: Non stationary analytical example - bounds to the reliability index

7.2 Durability of a corroded bending beam

7.2.1 Problem statement

Let us consider a steel bending beam. Its length is L = 5 m, its cross-section is rectangular (initial

breadth b0 and height h0). This beam is submitted to dead loads (denoting by ρst = 78.5 kN/m3 the

steel mass density, this load is equal to p = ρst b0h0 (N/m)) as well as a pinpoint load F applied at

midspan (see Figure 6.12).
 

 

F(ω ,t) 

b0 

h0 
dc(t)=κ t 

corroded area 

sound steel 

 

Figure 6.12: Corroded bending beam under midspan load

The bending moment is maximal in this point:

M =
Fl

4
+
ρstb0h0L

2

8
(6.111)

Assuming the steel has an elastic perfectly plastic constitutive law, and denoting by σe the yield stress,

the ultimate bending moment of the rectangular section is:

Mult =
b h2σe

4
(6.112)

It is now supposed that the steel beam corrodes in time. Precisely, the corrosion phenomenon is supposed

to start at t = 0 and to be linear in time, meaning that the corrosion depth dc all around the section

increases linearly in time (dc = κt). Assuming that the corroded areas have lost all mechanical stiffness,

the dimensions of the sound cross-section entering Eq.(6.112) at time t writes:

b(t) = b0 − 2κt h(t) = h0 − 2κt (6.113)
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Using the above notation, the beam fails at a given point in time if M(t) > Mult(t) (appearance of a

plastic hinge in the midspan). The limit state function associated with the failure reads:

g(t,X) = Mult(t)−M(t) =
b(t)h(t)2σe

4
−
(

Fl

4
+
ρstb0h0L

2

8

)

(6.114)

where the dependency of the cross section dimensions with respect to time have been specified in

Eq.(6.113). The random input parameters are gathered in Table 6.1.

Table 6.1: Corroded bending beam - random variables and parameters

Parameter Type of distribution Mean Coefficient of variation

Load F Gaussian 3500 N 20 %

Steel yield stress σe Lognormal 240 MPa 10 %

Initial beam breadth b0 Lognormal 0.2 m 5 %

Initial beam height h0 Lognormal 0.04 m 10 %

The time interval under consideration is [0,20 years]. The corrosion kinetics is controlled by κ = 0, 05

mm/year. The load is either modelled as a random variable (see Table 6.1) or as a Gaussian random

process with the same statistics. In the latter case, the autocorrelation coefficient function is of exponen-

tial square type, with a correlation length l = 1 day (i.e. 2.74 10−3 year). It is emphasized that the time

scales corresponding to the loading and to the corrosion are completely different, without introducing

any difficulty in the PHI2 solving strategy.

7.2.2 Numerical results

The initial probability of failure is computed by a time-invariant FORM analysis. It yields β = 4.53, i.e.

Pf,0 = 2.86 10−6. In the case when the load is modelled by a random variable F , the problem under

consideration reduces to a right-boundary problem (see Section 3.2). The reliability index smoothly

decreases in time due to the slow corrosion of the beam section. The reliability index is about 4 at the

end of the time interval (Figure 6.13).

Figure 6.13: Reliability of a corroded beam - Generalized reliability index βgen(t) = −Φ−1(Pf (0, t))

related to the upper bound of Pf (0, t)
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When the loading is modelled by a Gaussian random process, the problem mixes a degradation phe-

nomenon and a time-varying load. The outcrossing approach has to be used. The evolution in time of

the outcrossing rate is plotted in Figure 6.14. Although the loading process is stationary, it appears that

this outcrossing rate strongly evolves in time (due to the change in the size of the beam section), since

its value at t = 20 years is about 13 times that at t = 0.

The evolution in time of the generalized reliability index βgen(t) = −Φ−1(Pf (0, t)) is represented in

Figure 6.13. The dashed curve corresponds to the lower bound to Pf (0, t) obtained from Eq.(6.50). The

curve marked with circles corresponds to values of the upper bound to Pf (0, t) obtained from Eq.(6.50),

where the outcrossing rate has been computed by PHI2 (Eq.(6.102)). The plain curve marked with crosses

corresponds to values of the upper bound to Pf (0, t) obtained by asymptotic Laplace integration in time

domain. It appears that the reliability index decreases from 4.5 to 1.1. Again the asymptotic method

provides slightly conservative results compared to PHI2.
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Figure 6.14: Reliability of a corroded beam - Outcrossing rate ν+(t)

It appears that the evolution in time of the reliability index is drastically different in the second analysis

from that obtained for the right-boundary problem (β ≈ 1 instead of β ≈ 4 for t = 20 years). As the

latter is related to the lower bound PLB
f (0, t) in Eq.(6.50), it is clear from this example that this lower

bound is indeed crude.

7.3 General comparison between PHI2 and the asymptotic method

AsM makes use of analytical results for the outcrossing rate as well as asymptotic integration. It requires

one modified time-invariant FORM analysis to get Pf (t1, t2) in the stationary case (the design point is

searched both in the standard normal space and in the time interval [t1,t2] using a specific algorithm

(Abdo and Rackwitz, 1990)). When there is non stationarity in the problem, the first and second order

derivatives of the reliability index β(t∗) have to be computed by finite difference, which requires additional

FORM analyses around point t∗, thus additional computational cost. Globally speaking, the approach is

efficient, however at the price of various approximations.

Comparatively, the main advantage of the PHI2 method is the fact that it involves only well-established

time-invariant reliability tools to carry out the analysis. Any classical reliability software can thus be

used, see Schuëller, G.I. (Editor) (2006) for a recent review of existing softwares. Computationally
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speaking, obtaining the outcrossing rate ν+
PHI2(t) requires two successive FORM analyses. Note that the

second one is quite inexpensive, provided that the starting point is selected as the design point of the

first FORM analysis.

In stationary cases, one single evaluation of ν+
PHI2(t) is necessary. When non stationarity is present, several

evaluations of ν+
PHI2(t) at different instants are necessary when using PHI2, in order to be able to further

carry out the time integration. However, if the non stationarity is not too strong, only few integration

points are necessary for an accurate estimate, using e.g. a Gaussian quadrature rule. Accordingly, for

one single calculation of Pf (0, T ), the PHI2 approach may be less efficient than the AsM, since the latter

requires in contrast only one (modified) FORM analysis that directly provides the time-integrated result.

Note that the asymptotic formulæ could also be used in conjonction with PHI2, provided that the critical

point is selected manually: indeed, in contrast with AsM, the PHI2 method does not provide the most

critical point in time, as defined above.

More generally, engineers are usually interested not only in a single value of the probability of failure, but

in its evolution in time, i.e. {Pf (0, ti) , i = 1, . . . , N where tN = T}. In this case, the AsM would require

N successive analyses in a parametric study, whereas PHI2 would require 2N FORM analyses. As it is

possible to use the design point from the FORM analysis at ti as a starting point for the FORM analysis

at ti+1, PHI2 appears in practice less computationally expensive than AsM for this kind of parametric

studies, and provides a slightly better accuracy in all cases, as shown in Andrieu-Renaud et al. (2004).

7.4 Conclusion

As observed by Rackwitz (2001), time-variant reliability methods are not yet as mature as the methods

used for solving time-invariant problems. One can observe that most of the theoretical results were

developed in the 80’s, at a time where computer science had not attained its current power. Roughly

speaking, the asymptotic method as presented in Section 5 stems from the requirement of pushing the

analytical derivations as far as possible, even at the cost of additional assumptions (e.g. those used in

order to apply Laplace integration in time). It is the belief of the author that the alternative approach

initiated by Hagen, Der Kiureghian, and presented in its most recent version under the acronym PHI2,

has more potential to emerge in industrial applications, at least for three reasons:

• it is conceptually easier to understand, since it is essentially based on FORM. It practically avoids

to refer to the complex formalism of asymptotic integration;

• it may be applied using classical softwares designed for time-invariant reliability analysis;

• it has revealed more accurate (i.e. less conservative) than the AsM in various application examples,

whilst having a comparable cost.

The packaging of the PHI2 approach in commercial softwares would be of great help for propagating the

concepts of time-variant reliability analysis.

8 Space-variant reliability problems

8.1 Introduction

As shown in the previous sections, time-variant reliability problems correspond to cases when the limit

state function depends on time either directly or through random processes. Broadly speaking, the
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cumulative probability of failure is the probability that there is failure of the system at some (unknown)

time instant within a given time interval [t1, t2].

Similarly, space-variant reliability problems correspond to cases when the limit state function depends on

the spatial coordinates describing the geometry of the system, either directly or through random fields.

Two kinds of problems may be more specifically addressed, namely:

• the computation of the spatial cumulative probability of failure, i.e. the probability that failure

is attained at some (unknown) point x of the system, which occupies a domain B ∈ R
d, d =

1, 2, 3. This problem is briefly reviewed in Section 8.2. It was originally addressed in a pioneering

paper by Der Kiureghian and Zhang (1999), where a spatial counterpart of the now so-called PHI2

method (Section 6) was proposed. A direct solution to the space-variant problem using FORM and

importance sampling is proposed in Sudret et al. (2005) with a specific application to the reliability

of cooling towers.

• the characterization of the extent of damage, which is defined as a measure of the subdomain of B
in which the failure criterion is attained. The contribution of the author to this field (Sudret et al.,

2007; Sudret, 2008b) is summarized in Section 8.3.

8.2 Space-variant probability of failure

Let us suppose that the system under consideration occupies a volume B ⊂ R
d, where d = 1, 2 or 3. The

case d = 1 corresponds to modelling beam or arch structures, the case d = 2 to plate or shell structures.

Let us denote by x ∈ B the vector of spatial coordinates. In order to avoid any confusion, the input

parameters (resp. the input random vector) of the model and/or the limit state function are denoted by

z (resp. Z) in this section.

Due to the introduction of spatial variability, the random vector describing the uncertainty in the input

should be replaced by M multivariate scalar random fields gathered in a vector Z(x), the probabilistic de-

scription of these fields being yet to be specified. Note however that in practice the following assumptions

usually apply:

• the spatial variability of certain components of Z is negligible. They are accordingly modelled

as random variables. As a consequence, only a small number of scalar random fields have to be

specified in practice. However, for the sake of simplicity, the most general notation Z(x) is kept in

this section.

• the random field components are often homogeneous fields at the scale of the system. For instance,

when the degradation of structures is considered, the size of the structure is usually small compared

to the scale of fluctuation of the parameters driving the degradation (e.g. environmental parameters

such as surface chloride or carbon dioxyde concentration, etc.).

The time-and-space variant limit state function g(z,x, t) that represents mathematically the failure cri-

terion defines in each point x ∈ B at each time instant t a safe domain Ds(x, t) and a failure domain

Df (x, t):

Ds(x, t) = {z ∈ R
M : g(z,x, t) > 0} (6.115)

Df (x, t) = {z ∈ R
M : g(z,x, t) ≤ 0} (6.116)

The point-in-space probability of failure at time instant t is defined in each x ∈ B by:

Pf (x, t) =

∫

Df (x,t)

fZ(x)(z) dz = E
[

1Df (x,t)(z)
]

(6.117)
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It is computed by freezing x (i.e. replacing the random field Z(x) by the corresponding random vector)

and t, and by applying standard time-invariant reliability methods (MCS, FORM/SORM, etc.). Note

that if the random field Z(x) is homogeneous and if the limit state function does not depend directly on

x, then the same reliability problem is posed at whatever the position of the point x under consideration.

Thus the point-in-space probability of failure is independent of x in this case.

The space-variant probability of failure is defined for any subdomain B′ ⊂ B by (Der Kiureghian and

Zhang, 1999):

Pf (B′, t) = P (∃x ∈ B′ , g(Z(x),x, t) ≤ 0) = P

(

⋃

x∈B′

{g(Z(x),x, t) ≤ 0}
)

(6.118)

This quantity is the spatial counterpart of the so-called cumulative probability of failure in time-variant

reliability problems. Note that, similarly to Eq.(6.50), the space variant probability of failure Pf (B′, t)
is always greater than the maximum over B′ of the point-in-space probability of failure. It may be in

practice dramatically different, e.g. 2 or 3 orders of magnitude greater (Sudret et al., 2005).

Der Kiureghian and Zhang (1999) derived an upper bound to the space-variant probability of failure

by introducing the mean density of visits to the failure domain (which is the spatial counterpart of the

outcrossing rate defined in Eq.(6.51)) and its integration over the domain of interest B′.

8.3 Extent of damage for degrading structures

8.3.1 A class of degradation models

The degradation of structures in time may be defined in a broad sense as the loss of certain properties as

the result of chemical, physical or mechanical processes, or combinations thereof. For instance, concrete

structures are submitted to many degradation mechanisms, including rebars corrosion due to chloride

ingress or concrete carbonation.

The deterministic models for these degradation mechanisms are usually based on semi-empirical equations

that yield a so-called damage measure D (considered here as a scalar quantity) as a function of parameters

z and time:

D(t) =M(z, t) (6.119)

Examples of damages measures are:

• crack width, which may be modelled as a function of the corrosion rate of the rebars, the concrete

cover, the rebars diameter, etc. (Li et al., 2004),

• loss of rebars diameter, which depends on the corrosion rate and the time for initiation of corrosion,

the latter being modelled specifically in case of chloride or carbonation-induced corrosion (Sudret

et al., 2006)

• fatigue damage due to repeated application of stress cycles onto the structure (Petryna and Krätzig,

2005).

In order to assess the durability of the structure with respect to a given category of damage, a limit value

D̄ is usually prescribed (e.g. maximal acceptable crack width, etc.). Note that the damage measure in

Eq.(6.119) is an increasing function of time. Indeed, the degradation phenomena are usually irreversible.
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8.3.2 Space-variant reliability of damaged structures

The probabilistic degradation model in Eq.(6.119) is referred to as zero-dimensional, in the sense that it

does not involve any coordinate system attached to the structure. Thus it implicitely assumes a complete

homogeneity of the degradation all over the structure. In other words, for a given realization z0 of the

input random vector, the full structure would be either in the safe state (undamaged) or in the failure

state (fully damaged).

This is of course a coarse simplification of the real world. Moreover, it does clearly not allow the analyst

to characterize the extent of damage, since the structure is considered either as fully undamaged or

undamaged. To overcome this difficulty, the damage model has to be made space-variant, i.e. defined in

each point x ∈ B. Then the limit state function associated to excessive damage reads:

g(Z(x), t) = D̄(x, t)−M(Z(x), t) (6.120)

where D̄(x, t) is the maximal admissible damage at position x and time instant t.

The space-variant probability of failure Eq.(6.118) associated to the limit state function in Eq.(6.120) is

used when the structure is supposed to fail as soon as the local criterion is attained in a single point.

This may be the case when, for instance, the equivalent stress should not be greater than the yield stress

in any point of the structure (Der Kiureghian and Zhang, 1999).

8.3.3 Definition of the extent of damage

When considering the life cycle cost analysis of structures, the above quantity is not relevant. Indeed,

the serviceability of degrading structures is rather related to the extent of damage, which appears suited

to characterizing the global state of ageing of the structure. The cracked surface of the concrete deck of a

bridge, the corroded surface of steel structures, etc. are examples of extent of damage that may be used

for the optimization of maintenance policies (Li et al., 2004; Stewart, 2006).

In this report, the extent of damage is defined at each time instant t as the measure of the subdomain of

B in which the local failure criterion is attained:

E(B, t) =

∫

B
1Df (x,t)(x) dx =

∫

B
1g(Z(x),x,t)≤0(x) dx (6.121)

Note that E(B, t) is a scalar random variable since the integral over B is defined for each realization of

the input random field, say z(x). It is positive-valued, and by definition, it is bounded by the volume of

the structure in R
d denoted by |B|. Moreover, due to the monotonicity of degradation phenomena, each

realization of E(B, t), say e(B, t) is a continuously increasing function of time.

8.3.4 Statistical moments of the extent of damage

Analytical expressions for the mean value and variance of the extent of damage have been derived in

Sudret (2008b), based on ideas developed in Koo and Der Kiureghian (2003). The results are now

summarized.

By taking the expectation of Eq.(6.121) (i.e. with respect to Z), one gets the following expression for

the mean value of the extent of damage:

E(B, t) ≡ E [E(B, t)] =

∫

B
E
[

1g(Z(x), x,t)≤0(x)
]

dx (6.122)
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By comparing the integrand of the above equation with Eq.(6.117), one gets:

E(B, t) =

∫

B
Pf (x, t) dx (6.123)

In case of homogeneous input random fields, this integrand is independent of x, as explained above.

Thus:

E(B, t) = Pf (x0, t) · |B| (Homogeneous case) (6.124)

where the point-in-space probability of failure is computed at any point x0 ∈ B.

The above equation has the following interpretation: the proportion of the structure where the damage

criterion is attained (i.e. E(B, t)/|B|) is, in the mean, equal to the point-in-space probability of failure.

This remark has two important consequences:

• it is not necessary to introduce the complex formalism of random fields when one is interested only

in the mean value of E(B, t). Only the description of the input random variables gathered in vector

Z is required.

• the mean proportion of the structure that is damaged is independent of the correlation structure of

the input random field Z(x), if the spatial variability is modelled. This is a valuable result, since

the determination of the correlation structure is difficult and hardly done in practice, due to the

lack of data (the auto-correlation functions and their parameters being often chosen from “expert

judgment”, as in Li et al. (2004); Stewart (2006)).

The variance of the extent of damage can also be derived. By definition, this quantity reads:

Var [E(B, t)] = E
[

E2(B, t)
]

− E(B, t)2 (6.125)

From the definition in Eq.(6.121) one can write:

E2(B, t) =

(∫

B
1g(Z(x), t)≤0(x) dx

)

·
(∫

B
1g(Z(x), t)≤0(x) dx

)

=

∫

B

∫

B
1g(Z(x1), t)≤0(x1) · 1g(Z(x2), t)≤0(x2) dx1dx2

(6.126)

The integrand is equal to one if and only if the limit state function takes negative values at both locations

x1 and x2. Thus (6.126) may be rewritten as:

E2(B, t) =

∫

B

∫

B
1g(Z(x1), t)≤0 ∩ g(Z(x2), t)≤0(x1 , x2) dx1dx2 (6.127)

Hence:

E
[

E2(B, t)
]

=

∫

B

∫

B
P (g(Z(x1), t) ≤ 0 ∩ g(Z(x2), t) ≤ 0) dx1 dx2 (6.128)

Here again, the assumption of homogeneity allows to simplify the above equation. Indeed, the integrand

in Eq.(6.128) depends only on |x1−x2| in this case, meaning that it is an even function of (xj
1−xj

2), j =

1, . . . , d. One can prove that the above double integral may be reduced to a single integral (Sudret,

2008b). For the sake of clarity, results are reported here separately for d = 1 and d = 2.

• For a beam of length L (d = 1, |B| = L), the variance of the extent of damage is:

Var [E(B, t)] = L2

∫ 1

0

P (g(Z(0), t) ≤ 0 ∩ g(Z(Lu), t) ≤ 0) (2− 2u) du− E(B, t)2 (6.129)
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• For a rectangular plate of dimensions (L1, L2), the variance of the extent of damage is:

Var [E(B, t)] = L2
1 L

2
2

∫ 1

0

∫ 1

0

P (g(Z(0, 0), t) ≤ 0 ∩ g(Z(L1u,L2v), t) ≤ 0) . . .

. . . (2− 2u)(2− 2 v) du dv − E(B, t)2
(6.130)

The integrals in Eqs.(6.129),(6.130) are rather easy to evaluate since both the integration domain and

the integrands are bounded. A typical Gaussian quadrature rule (Abramowitz and Stegun, 1970) may

be used for this purpose.

8.4 Application example

In this section, a RC beam submitted to carbonation-induced rebars corrosion is considered for the sake

of illustration. A simple degradation model including the kinetics of concrete carbonation and rebars

corrosion is first described. Then the mean and variance of the extent of damage are computed from

Eqs.(6.124)-(6.129) and compared to Monte Carlo simulation results. These results are taken from Sudret

(2008b).

8.4.1 Point-in-space model of concrete carbonation

Concrete carbonation is a complex physico-chemical process that includes the diffusion of CO2 into the

gas phase of the concrete pores and its reaction with the calcium hydroxyl Ca(OH)2. The latter can be

simplified into:

Ca(OH)2 + CO2 −→ CaCO3 +H2O (6.131)

As the high pH of uncarbonated concrete is mainly due to the presence of Ca(OH)2, it is clear that the

consumption of this species will lead to a pH drop, which can attain a value of 9 when the reaction is

completed. In this environment, the oxide layer that protected the reinforcement bars is attacked and

corrosion starts. The corrosion products tend to expand into the pores of concrete, developing tensile

stresses which eventually lead to cracking (Liu and Weyers, 1998; Thoft-Christensen, 2003; Bhargava

et al., 2006).

In practice, CO2 penetrates into the concrete mass by diffusion from the surface layer. Thus a carbonation

front appears that moves into the structure. A model for computing the carbonation depth xc is proposed

by the CEB Task Group 5.1 & 5.2 (1997). The simplified version retained in the present paper reads:

xc(t) =

√

2C0DCO2

a
t (6.132)

where DCO2
is the coefficient of diffusion of carbon dioxide in dry concrete, C0 is the carbon dioxide

concentration in the surrounding air and a is the binding capacity, i.e. the amount of carbon dioxide

necessary for a complete carbonation of a concrete volume. It is supposed that corrosion immediately

starts when carbonation has attained the rebars. Denoting by e the concrete cover, the time necessary

for corrosion to start, called initiation time, reads:

Tinit =
a e2

2C0DCO2

(6.133)

If generalized corrosion is considered, the loss of metal due to corrosion is approximately uniform over

the whole surface. In this case, Faraday’s law indicates that a unit corrosion current density (or corrosion

rate) corresponds to a uniform corrosion penetration of κ = 11, 6µm/year. If a constant annual corrosion

rate is supposed, the expression of the rebars diameter as a function of time eventually reads:

φ(t) =

{

φ0 if t ≤ Tinit

max[φ0 − 2 icorr κ(t− Tinit) , 0] if t > Tinit
(6.134)
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This evolution of the rebars’ diameter is sketched in Figure 6.15 together with the expected damage at

each step.

Figure 6.15: Evolution in time of the rebars diameter and associated state of damage

From experimental evidence (Alonso et al., 1998; Broomfield, 1997), it is possible to associate a value λ

(representing the relative loss of rebar’s diameter) to a given state of damage (i.e. crack initiation, severe

cracking, spalling, etc.). For instance, a value of λ = 0.5− 1% is consistent with the apparition of cracks.

8.4.2 Probabilistic problem statement

Point-in-space failure criterion The parameters appearing in Eqs.(6.133),(6.134) are uncertain in

nature. Thus they are represented by random variables gathered in a random vector Z:

Z = {DCO2
, C0 , a , e , φ0 , icorr}T (6.135)

The damage criterion is defined at a given time instant by the fact that the residual rebars diameter

(Eq.(6.134)) becomes smaller than a prescribed fraction (1− λ) of its initial value:

g(Z, t) = φ(t)− (1− λ)φ0 (6.136)

After some basic algebra, this reduces to:

g(Z, t) = λφ0 − 2 icorr κ(t−
a e2

2C0DCO2

) (6.137)

Probabilistic model of the input parameters The RC beam under consideration (of length L =

10 m) is reinforced by a single longitudinal reinforcing bar whose initial diameter is modelled by a

lognormal random variable φ0. The concrete cover e(x) is a univariate homogeneous lognormal random

field, obtained by exponentiation of a Gaussian random field, whose properties are given below. This

allows to model the imperfections in placing the rebar into the falsework.

The parameters {C0 , a} are modelled by lognormal random variables. The coefficient of diffusion DC02

is modelled as a homogeneous lognormal random field. The corrosion current density icorr(x) is supposed

to be inversely proportional to the concrete cover (Vu and Stewart, 2005):

icorr(x) = i0corr

e0
e(x)

(6.138)
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In this equation, e0 = 50 mm is the mean concrete cover and i0corr is a lognormal random variable. The

above expression has the following interpretation: variable i0corr models the overall uncertainty on the

corrosion rate, whereas its spatial variability is perfectly correlated to that of the concrete cover. The

mean value of the corrosion rate is 2.08 µA/cm2. The parameters describing these six input quantities

(2 random fields and 4 random variables) are gathered in Table 6.2.

Table 6.2: Extent of damage in a RC beam - Probabilistic input data

Parameter Type of PDF Mean value Coef. Var. A.c.f†

Rebars diameter φ0 lognormal 10 mm 10 % −
Diffusion coefficient DCO2

lognormal 5.10−8 m2/s 30 % ρD(x1, x2)

Surface concentration C0 lognormal 6.2 10−4 kg/m3 30 % −
Binding capacity a lognormal 80 kg/m3 30 % −
Nominal corrosion rate i0corr(x) lognormal 1 µA/cm2 25 % −
Concrete cover e(s) lognormal 50 mm 20 % ρe(x1, x2)

† Autocorrelation coefficient function of the underlying Gaussian field

ρD(x1, x2) = e−π(x1−x2)
2/θ2

D , θD = 2 m ; ρe(x1, x2) = e−π(x1−x2)
2/θ2

e , θe = 2 m

8.4.3 Mean value and standard deviation of the extent of damage

The mean value of the extent of damage is computed by three approaches and plotted in Figure 6.16,

namely:

• Eq.(6.124), where the point-in-space probability of failure, obtained by freezing the spatial coor-

dinate x (i.e. replacing the random fields e(x) and DCO2
(x) by lognormal random variables) is

computed by FORM analysis (∇-curve);

• Eq.(6.124), where the point-in-space probability of failure is obtained by Monte Carlo simulation

using 100,000 samples (△-curve);

• A Monte Carlo simulation method based on the discretization of the input random fields and used

as a reference result, see Sudret (2008b) for details (continuous curve). The EOLE discretization

of both input fields was carried out using a regular grid consisting in N = 81 points over [0, 10 m].

A number r = 16 points was retained in the spectral decomposition (Eq.(2.83)). This allows one to

get a maximal relative discretization error on the field variance of 0.1 %. A total number of 10,000

spatial realizations of the limit state function was used.

An excellent agreement between the various approaches is observed. The maximal discrepancy between

FORM and the field discretization approach is less than 5%, and less than 2% for t ≥ 40 years.

The standard deviation of the extent of damage is computed by three approaches as well:

• Eq.(6.129) where the system reliability problem under the integral is solved by FORM;

• Eq.(6.129) where this problem is solved by MCS (100,000 samples were used);

• a Monte Carlo approach based on random field discretizations.

The standard deviation of the extent of damage obtained by the three approaches is plotted in Figure 6.17.

Here again, the agreement between the various approaches is excellent. The maximal discrepancy between

the analytical and the field discretization approaches is less than 9%, and about 0.2% for t ≥ 40 years.

Note that the coefficient of variation of the extent of damage is rather large (more than 300% in the early

ages downto about 120% for t = 60 years).
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Figure 6.16: Evolution in time of the mean extent of damage
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Figure 6.17: Evolution in time of the standard deviation of the extent of damage

The various algorithms to compute the mean and standard deviation of the extent of damage are im-

plemented in MathCad. In terms of efficiency, the random field discretization approach requires about

5 hours on a standard PC (Pentium M processor at 1.6 GHz, 512MB RAM) to get the curves in Fig-

ures 6.16-6.17, whereas the analytical approach (FORM and MCS) requires less than 2 minutes.
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8.4.4 Histogram of the extent of damage

From the Monte Carlo simulations of the extent of damage, it is possible to plot histograms of the

extent of damage, see Figure 6.18. It is first observed that there is always a non zero number of spatial

realizations of the limit state function that are strictly positive, meaning that the associated realization

of the extent of damage e([0, L], t) is exactly equal to zero. In other words, there is a probability spike

on zero. This spike is all the greater since the time instant is small (the spikes in the figure are not on

scale). Similarly, when time increases (e.g. t = 60 years), another spike appears for e([0, L], t) = L. This

represents cases where the beam is fully damaged.
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Figure 6.18: Histogram of the extent of damage (m) at various time instants (10,000 samples)

Additional results concerning the computation of the probability spikes at the left boundary (probability

of no corrosion) and the influence of the autocorrelation coefficient function (i.e. type and correlation

length) of the input random fields are given in Sudret (2008b). It is shown in particular that the standard

deviation of the extent of damage is rather insensitive to the latter, which is a valuable result since the

shape and scale parameters of the autocorrelation coefficient functions are difficult to infer in practice

due to lack of data.
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8.5 Conclusion

Space-variant reliability problems have emerged in the last few years in various domains of mechanical

and civil engineering. Apart form a pioneering paper by Der Kiureghian and Zhang (1999), not much

work has been devoted to the theoretical aspects of the computation of space-variant probabilities of

failure.

From the viewpoint of applications, space-variant reliability has been recently considered in the concrete

deterioration of structures by Li et al. (2004); Stewart (2004); Vu and Stewart (2005); Darmawan and

Stewart (2007); Stewart and Al-Harthy (2008), where Monte-Carlo simulation is used for the practical

computation. The use of the extent of damage to optimize maintenance policies has been more specifically

addressed in Li (2004); Li et al. (2004); Stewart et al. (2006); Stewart and Mullard (2007).

As far as the extent of damage is considered, the analytical expressions presented above have been

originally presented in Sudret et al. (2006, 2007) and more rigorously derived and extended in Sudret

(2008b). Note that the distribution of the random variable E(B, t) (Eq.(6.121)) cannot be described

only by its mean and standard deviation. As shown in the application example, it is a mixed random

variable obtained as the sum of two probability peaks at the bounds of its support, e.g. e(B, t) = 0 (resp.

e(B, t) = |B|, and a continuous distribution in between. This should be accounted for when the random

variable E(B, t) itself enters a reliability problem, for instance for maintenance issues.

9 Conclusion

This chapter has presented a short survey of methods for solving time and space-variant reliability prob-

lems. After introducing the basics of random processes, the general formulation of time-variant reliability

problems has been given. The important case of so-called right-boundary problems was first addressed.

It corresponds to applications where time enters the problem definition through deterioration of material

properties, which is associated with a monotonic decreasing kinetics of the resistance quantities. This

class of problems can be reduced to time-invariant problems if it is possible to show that the limit state

function is monotonically decreasing in time whatever the realizations of the random variables.

In more general cases when loading is modelled using random processes, the outcrossing approach has to

be used. The central quantity to be computed is the outcrossing rate ν+(t), which gives by integration

over [t1, t2] the mean number of outcrossings E [N+ (t1, t2)].

The computation of ν+(t) and E [N+ (t1, t2)] has been presented for Gaussian differentiable processes.

Additional results for rectangular wave renewal processes can be found in Sudret (2006b). The case

of problems involving random variables together with random processes is addressed using asymptotic

integration, which is equivalent to applying SORM. In non stationary cases, the time integration is also

carried out asymptotically using Laplace integration.

The PHI2 method is an alternative method that allows the analyst to use any time-invariant reliability

software at hand. It is based on analytical derivations for the outcrossing rate. The numerical examples

show that the evolution of the outcrossing rate obtained by PHI2 tends to be more accurate than that

obtained by AsM (which is however often conservative).

Finally, space-variant reliability problems and the associated extent of damage have been introduced. It

is observed that this field is not yet as mature as that of time-variant reliability. However, it may become

more and more important in the future especially in the life cycle cost analysis of structures.





Chapter 7

Durability of industrial systems

1 Introduction

As mentioned in the first chapter, the research work reported in this thesis has been carried out in an

industrial context at the Research and Development Division of eDF. For this reason, the author was

constantly in contact with many applications in civil and mechanical engineering that were submitted

by his colleagues. Interestingly, these practical problems have often raised challenging research problems

that required advanced theoretical formulations.

Three application examples are reported in this chapter in order to illustrate this valuable interaction

between practical uncertainty propagation problems and theoretical formulations.

The first example deals with fatigue analysis. The natural scatter that is observed in the fatigue behaviour

of structures is recognized by the engineers but not often taken into account through probabilistic models.

The probabilistic framework presented in Section 2 aims at giving a consistent model for the various

uncertainties appearing in fatigue design.

The second example deals with the reliability of cooling towers, which are huge concrete structures used

in nuclear power plants as heat exchangers. This example allows to illustrate some aspects of time- and

space-variant reliability problems that were presented from a theoretical point of view in Chapter 6.

The third example deals with the crack propagation in a pipe structure submitted to internal pressure

and axial tensile stress. It is a classical reliability problem which is solved here by means of polynomial

chaos expansions. Various non intrusive methods presented in Chapter 4 are coupled with a non linear

finite element model of the cracked pipe.

2 Thermal fatigue problems

2.1 Introduction

A number of components in nuclear power plants are subject to thermal and mechanical loading cycles.

The assessment of these components with respect to low cycle and high cycle fatigue is of great importance

for the global safety, efficiency and availability of the power plant. The French assessment rules, which

are codified in a design code called RCC-M (AFCEN, 2000) are fully deterministic in nature. However,

it is well known that various sources of uncertainty affect the behaviour of structures subject to fatigue,

namely:



156 Chapter 7. Durability of industrial systems

• the scatter of the results observed when fatigue tests are carried out onto a set of identical specimens

(same material, same loading conditions, same environment, etc.), see Shen et al. (1996);

• the size, surface finish and environmental effects (temperature, oxygen content in the pressurized

water reactor (PWR) environment), which globally reduce the fatigue life time of a real structure

(Collectif, 1998; Chopra and Shack, 1998; Rosinski, 2001). In the codified design, the so-called

margin factors are applied to the “best-fit” experimental curve in order to obtain the design fatigue

curve, i.e. to compute the number-of-cycles-to-failure of a structure in its operating conditions

from the number-of-cycles-to-failure of a specimen tested in the laboratory. These factors denoted

hereinafter by γN , γS are respectively applied to reducing the number of cycles or increasing the

applied stress, whichever is more conservative. They allow one to take into account inclusively the

scatter of the specimen test data as well as the size, surface finish and environmental effects.

• the imperfection of the mechanical model that yields the stress cycles amplitudes. The model may

be quite accurate per se while the input parameters (e.g. material properties) may not be well

known. Furthermore, in the specific case of fatigue due to thermal fluctuations in PWR circuits,

the loading itself may not be well known.

• the uncertainty in evaluating the cumulated damage, using for instance Miner’s rule of linear damage

accumulation.

In this context, it appears interesting to introduce explicitly the uncertainties in fatigue analysis through

a rigorous probabilistic modelling of all uncertain input quantities, and study their influence onto the

output (e.g. the cumulated damage D). In the probabilistic context, this cumulated damage indeed

becomes a random variable, which depends on all input random variables and can be characterized in

terms of mean value, standard deviation, etc. The latter corresponds to the scattering of life time of

identical components that could be observed in a fleet of identical pressurized water reactors.

From the point of view of reliability analysis, it will be possible to compute the probability of failure

with respect to crack initiation, i.e. the probability that the cumulated damage is greater than 1 for a

prescribed operating duration.

The deterministic framework used for fatigue assessment of nuclear components is first recalled in a

simplified manner. The various sources of uncertainty that have been mentioned above are then listed

and a suitable probabilistic model is proposed for each of them. Finally an application example concerning

the probabilistic fatigue assessment of a pipe is presented. This section is much inspired from Sudret and

Guédé (2005); Guédé et al. (2007), which are synthesis papers based on the Ph.D thesis of Guédé (2005).

2.2 Deterministic framework for fatigue assessment

The assessment of structural components such as pipes against thermal fatigue requires the following

input, according to the French nuclear design code RCC-M (AFCEN, 2000):

• Description of the loading applied to the component: the temperature history applied onto

the inner wall of the pipe is given e.g. from a thermo-hydraulic calculation, experimental data

obtained from scaled models or in situ measurements.

• Mechanical model: it allows to compute the evolution in time of the stresses in each point of

the component. The input parameters are the geometry (e.g. pipe radius and thickness), the

material properties (e.g. Young’s modulus, Poisson’s ratio, coefficient of thermal expansion) and

fluid/structure boundary conditions (e.g. heat transfer coefficient). Analytical or numerical (e.g.

finite element) models can be used. An equivalent stress σeq(t) is then obtained using for instance

the Tresca criterion.
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• Extraction and counting of the cycles: from the computed evolution σeq(t), stress cycles are

extracted using the Rainflow method (Amzallag et al., 1994). A sequence of stress amplitudes

Si , i = 1, · · ·Nc can be determined on a time interval (each stress amplitude Si corresponds to

half of the difference between the consecutive peaks obtained by the Rainflow method).

• Choice of a design curve: as described in the introduction, the design curve Nd(S) is obtained

from experimental results that provide the best-fit specimen curve Nbf (S), and from margin factors

(γN = 20 on number of cycles, γS = 2 on stress, whichever is more conservative):

Nd(S) = min(Nbf (S)/γN , Nbf (γS S)) (7.1)

• Computation of the cumulated damage: the Miner’s rule (linear damage accumulation) is used

in order to estimate the fatigue damage. It postulates that the elementary damage di associated

with one cycle of amplitude Si is computed by di = 1/Nd(Si) (where Nd(S) is the design curve) and

that the total damage is obtained by summation. This leads to compute the cumulated damage

(also called usage factor) D by:

D =

N
∑

i=1

di =

N
∑

i=1

1/Nd(Si) (7.2)

This usage factor is then compared to 1: if it is smaller than 1, the component is supposed to be safely

designed. If it is greater than 1, fatigue cracks may appear onto the component. Moreover, if D is the

usage factor associated with a sequence of cycles which is repeated periodically, the fatigue life Td of

the component may be computed as Td = 1/D and is interpreted as the number of (periodic) sequences

of cycles that the component may undergo before crack initiation. The flow chart summarizing the

deterministic design procedure is given in Figure 7.1.

Figure 7.1: Fatigue – Flow chart of the deterministic assessment

2.3 Probabilistic representation of the input data and the cumulated damage

2.3.1 Thermal loading

The temperature of the fluid at the inner wall of the pipe may be represented either by:

• a deterministic signal obtained from measurements (in situ or from scale models) or a thermo-

hydraulic computation (Benhamadouche et al., 2003);
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• a random process, which is supposed Gaussian and stationary due to the periodicity in the circuit

operating. Generally speaking, this process may be indexed on both time and space coordinates. In

order to be handled in the calculation, the process has to be discretized either in the time domain

(generation of trajectories) or in the frequency domain (using the power spectral density function).

2.3.2 Mechanical model

The mechanical model allows to compute the history of the stress tensor from the geometry, material

properties and loading parameters. Its complexity can vary from low (e.g. analytical one-dimensional

formulation) to high (e.g. three-dimensional non linear finite element analysis).

From the probabilistic point of view, all the input parameters of the code can be considered as random

variables, including geometrical characteristics (e.g. pipe radius and thickness), material properties (e.g.

Young’s modulus, Poisson’s ratio, thermal expansion coefficient) and fluid/structure boundary conditions

(e.g. heat transfer coefficient). Each random variable is defined by its probability density function, which

may be inferred using the methods developed in Chapters 2 and 5.

2.3.3 Scatter of the fatigue test results

Natural approach The number-of-cycles-to-failure observed in a set of specimens made of the same

material tested in the same experimental conditions (same alternate stress, strain ratio, etc.) shows a

significant scatter. This scatter is all the larger since the alternate stress S is close to the endurance

limit. The number-of-cycles-to-failure at a given alternate stress S is thus represented by a random

variable NS(ω). The statistical analysis used in order to characterize properly this random variable has

been originally presented in Sudret et al. (2003) under three different assumptions. The statistical model

which revealed the most accurate is summarized in the sequel.

For each stress amplitude S, the number-of-cycles-to-failure NS(ω) is supposed to follow a lognormal

distribution, whose mean and standard deviation are dependent on S. Moreover, it is assumed that

these random variables NS(ω) are perfectly correlated whatever the stress level S. This corresponds to

the heuristic assumption that a given sample (which is a realization of the material in the probabilistic

vocabulary) is globally “well” or “poorly” resisting to fatigue crack initiation whatever the applied stress.

Unfortunately this assumption cannot be verified since only one test at a given stress level can be carried

out (then the sample is broken and cannot be tested at another stress level). These assumptions lead to

write:

logNS(ω) = λ(S) + σ(S) ξ(ω) (7.3)

where λ(S) and σ(S) are the mean and standard deviation of logNS and ξ is a standard normal random

variable. The model for the median curve is based on the work by Langer (1962). The observation of

data leads to consider the standard deviation σ(S) as proportional to the medium curve (heteroscedastic

assumption). Thus:

λ(S) = A log (S − SD) +B σ(S) = δ λ(S) (7.4)

The probabilistic S-N curve is thus fully characterized by four parameters, namely A,B, SD, δ, which are

estimated using the maximum likelihood method. Due to Eqs.(7.3),(7.4), the median S-N curve, denoted

by N50%(S) has the following expression:

N50%(S) = eB (S − SD)A (7.5)
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ESOPE approach The above approach has been slightly modified by Perrin et al. (2005) in order to

take into account the censored data, i.e. the samples that have not failed before the maximum number-

of-cycles under consideration. In the same communication, it is also compared to the so-called ESOPE

method, which is a French codified approach for establishing probabilistic S-N curves (AFNOR, 1990).

In the ESOPE method, the CDF of the number-of-cycles-to-failure, say FNS
(S,N), is supposed to vary

as the Gaussian CDF as follows:

FNS
(S,N) = Φ

(

S − µ(N)

σ

)

(7.6)

where σ is a scattering parameter and µ(N) has to be given a parametric expression. It is seen that, in

this approach, iso-probabilistic S-N curve (i.e. the curves Np(S) corresponding to a given quantile p such

that P (NS(ω) ≤ Np(S)) = p) are implicitly defined by:

p = Φ

(

S − µ(N)

σ

)

(7.7)

Hence the relationship between the median curve (p = 0) and the (yet-to-be-defined) expression for µ(.)

in the ESOPE approach:

N50%(S) : S = µ(N50%(S)) (7.8)

In order to be consistent with Eq.(7.5), the expression for µ(N) is chosen by solving for S in this very

equation:

µ(N) ≡ SD + e−B/AN1/A (7.9)

Again, the parameters A,B, SD, σ are obtained by the maximum likelihood method.

The two approaches have been compared using a private data base comprising 153 specimens of austenitic

stainless steel tested at room temperature. As far as the median S-N curves are compared, the approach

by Guédé et al. and the ESOPE approach provide very similar results. However, goodness-of-fit tests

applied to each estimation show that the formulation in Eqs.(7.3)-(7.4) provides the best fit of the aleatoric

uncertainty of NS , the assumptions in the ESOPE formulation being rejected by the various tests. Note

that the comparison has been carried out on a specific type of material and that the conclusion on the

efficiency of the ESOPE method may not be general. It would be interesting to apply both approaches

to other types of material in further investigations.

Complementary results The above approach by Guédé et al. may be improved by considering that

SD is not only a parameter of the statiscal model, but also a physically meaningful quantity, i.e. the

endurance limit of the material. In this respect, SD can be thought as dependent on the sample under

consideration and thus be modelled as a random variable. Following the assumptions in Pascual and

Meeker (1997), it is supposed that this variable has a lognormal distribution, whose mean and standard

deviation have to be estimated from the sample set:

SD = eV ; V ∼ N (mV , σV ) (7.10)

The probabilistic model for the S-N curve thus depends on the five parameters A, B, δ, mV , σV . This

approach is investigated in details by Perrin et al. (2007b) and compared to the previous results by Guédé

et al. on the same data set. As expected, the incidence of the randomness of the endurance limit appears

negligible in the Low Cycle Fatigue (LCF) domain (large amplitude S) but may be significant in the High

Cycle Fatigue (HCF) domain.
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2.3.4 Specimen-to-structure passage factors

As described above, each of the design margin factors
(

γN = 20 ; γS = 2
)

can be decomposed into a

product of two sub-factors.

γN = γN
scat · γN

passage

γS = γS
scat · γS

passage

(7.11)

In this expression, γN
scat and γN

passage respectively denote:

• a subfactor taking into account the scatter of the test results, e.g. γN
scat = 2 on γN = 20 and

γS
scat = 1.19 on γS = 2 (Collectif, 1998);

• a specimen-to-structure passage factor taking into account the reduction of fatigue life of a real

component in its environment compared to a specimen made of the same material tested in the

laboratory. This global passage factor is the product of the size effect, the surface finish and the

environment- subfactors.

In the present probabilistic framework, the scatter of the number-of-cycles-to-failure of the specimens is

already described by the very definition of the random variable NS(ω). Passage factors are also considered

as random variables, whose parameters are yet to be defined, e.g. from experiments carried out both on

specimen and scaled structures and comparisons thereof. This work is currently in progress, see Perrin

et al. (2007).

When only empirical results are available from the literature, it is possible to take loose assumptions on

the PDF of these passage factors, such as positiveness and upper bounds.

2.3.5 Random fatigue damage

Introduction According to the above assumptions, the elementary damage d(S, ω) undergone by a

structure submitted to a cycle S is a random variable defined by:

d(S, ω) = 1/min
[

N(S, ω)/γN
passage , N(γS

passageS, ω)
]

(7.12)

where the notation N(S, ω) ≡ NS(ω) is used in the sequel for the sake of clarity. Using Miner’s rule,

the cumulated damage is also a random variable depending on all the input random variables described

above:

D(ω) =

Nc
∑

i=1

d(Si, ω) (7.13)

where Nc is the number of applied stress cycles. If the model that computes the stress cycles depends itself

on random variables, this randomness also propagates into the final expression of damage. The aim of

this section is to define more clearly what is the random fatigue damage. Two alternatives are presented,

namely a continuous and a discrete formulation. In the sequel, this random variable is characterized in

terms of statistics (mean value, standard deviation) or extreme values (e.g. probability of exceeding the

threshold value of 1.)

For the sake of clarity, the following notation is used in this paragraph: the randomness in the fatigue

strength of the material is denoted by ωm, i.e. the number-of-cycles-to-failure is N(S, ωm). Conversely,

the randomness associated to the loading is denoted by ωS , e.g. the thermal loading is T (t, ωS). Suppose

also that the other input variables may be considered as deterministic for the time being.

The thermal loading T (t, ωS) is supposed to be Gaussian stationary process throughout the component

service life. It is also assumed that the mechanical model relating the loading to the equivalent scalar
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stress S(t, ωS) keeps the normality and the stationarity of the random process. This is the case when

elastic material behaviour is imposed. Under this hypothesis, S(t, ωS) is likewise a Gaussian stationary

process. Let us consider {Si(ωS)}Nc

i=1 the set of stress amplitudes extracted from the equivalent stress

by the Rainflow counting, whereNc, which is presumably random, denotes the total number of cycles

throughout the actual component service life. Under the assumption of stationarity of S(t, ωS) and

for a large number of cycles, Nc can be regarded as a constant (Tovo, 2001). Finally, {Si(ωS)}Nc

i=1 is

assumed to be a set of independent and identically distributed random variables with probability density

function fS(S). The resulting random fatigue damage is expressed in two ways, namely by a continuous

formulation and a discrete formulation.

Discrete formulation According to Miner’s rule, the cumulative damage also reads:

D(Nc, ωS , ωm) =

Nc
∑

i=1

Yi(ωS , ωm) where Yi(ωS , ωm) =
1

N (Si(ωS), ωm)
(7.14)

Having noted that {Si(ωS)}Nc

i=1 is a set of independent and identically distributed random variables, it is

clear that {Yi(ωS , ωm)}Nc

i=1 is, likewise, a set of independent and identically distributed random variables.

Let µY (ωm) = ES [Yi(ωS , ωm)] and σ2
Y (ωm) = VarS [Yi(ωS , ωm)] be the mean and the variance of the Yi’s

with respect to ωS . Since Nc is large enough, the central limit theorem states that the cumulative damage

tends to be normally distributed with mean value Nc µY (ωm) and standard deviation σY (ωm)
√
Nc. Thus,

for a sufficiently large value of Nc, the cumulative random damage is approximated by:

D(Nc, ωS , ωm) ≈ NcµY (ωm)

[

1 +
σY (ωm)

µY (ωm)
√
Nc

ξ(ωS)

]

(7.15)

where ξ(ωS) is a standard Gaussian variable. When Nc tends to infinity, the factor σY (ωm)
/

µY (ωm)
√
Nc

vanishes, and the damage becomes:

D(Nc, ωS , ωm) ≈ NcµY (ωm) = Nc ES

[

1

N(S, ωm)

]

(7.16)

Continuous formulation Let n(S, ωS) dS be the number of cycles of stress amplitudes in the elemen-

tary interval [S ; S + dS] throughout the component service life. Since Nc takes large values, the law of

large numbers states that n(S, ωS) dS is given by:

n(S, ωS) dS = Nc fS(S) dS (7.17)

Based on Miner’s rule, the elementary damage associated to the cycles of stress amplitudes between S

and S + dS is given by:

dD(Nc, S, ωS , ωm) =
Nc fS(S) dS

N(S, ωm)
(7.18)

The total damage is written as:

D(Nc, S, ωm) =

∞
∫

0

Nc fS(S) dS

N(S, ωm)
= NcES

[

1

N(S, ωm)

]

(7.19)

where ES [·] is the mathematical expectation operator with respect to ωS . This is eactly what comes out

of the discrete formulation when Nc tends to infinity.

Note that in this formulation, the random damage contains no uncertainty related to the stress variations,

since ωS is removed by application of the expectation operator ES [·]. This can be interpreted as follows:

provided the rule for damage accumulation is linear, and provided the Rainflow stress amplitudes are

independent random variables, the cumulative damage for a large number of cycles is independent of the

randomness in the loading.
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2.4 Application example to a pipe

2.4.1 Problem statement

Let us consider a pipe typically encountered in a circuit of a pressurized water reactor (inner radius Rint,

thickness t). Due to the shape of the circuit, the load temperature in a given section of the pipe is close

to periodical. Of course, thermal fluctuations may appear in the real operating procedure. However, the

thermal loading will be considered here as deterministic for the sake of simplicity. The fluid temperature

history at the inner wall of the pipe is plotted in Figure 7.2 for one sequence of operating.

Figure 7.2: Fatigue analysis of a pipe: fluid temperature history

2.4.2 Mechanical model

Let us consider a typical section of a straight portion of the circuit. Due to symmetry, the one-dimensional

axisymmetric model is relevant to compute the stress history. The simulation assumes generalized plane

strain conditions (strain component εzz is supposed constant throughout the pipe thickness and is an

unknown of the problem). Geometry and material properties are gathered in Table 7.1.

Table 7.1: Fatigue analysis of a pipe: input random variables

Parameter Type of law Mean value CV

Internal radius Rint lognormal 0.12728 m 5 %

Thickness t lognormal 0.00927 m 5 %

Heat capacity ρCp lognormal 4,024,000 J/kg 10 %

Thermal conductivity λ lognormal 16.345 W.m−1.K−1 15 %

Heat transfer coefficient H lognormal 20,000 W.K−1.m−2 30 %

Young’s modulus E lognormal 189,080 MPa 15 %

Poisson’s ratio ν Beta [0 ; 0,5] 0.3 10 %

Thermal expansion coefficient α lognormal 16.95 10−6 10 %

Passage factor γN
passage Beta [0 ; 20] 10 20 %

Passage factor γS
passage Beta [0 ; 2] 1.68 20 %

Fatigue strength scatter ξ (Eq.(5)) normal 0 Std. Dev.: 1

Due to the peculiar geometry of the problem, the stress tensor is diagonal in the cylindrical coordinate

system (r, θ, z). The stress component σrr due to thermal loading is zero at the inner wall, whereas

the two other components are equal (σθθ = σzz). This means that the three-dimensional stress state is
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completely described by a scalar stress history σθθ(t), from which the stress cycles can be easily obtained

using the Rainflow counting method.

2.4.3 Deterministic fatigue analysis

The fatigue behavior of the material of the pipe under consideration is assumed to be described by

Eqs.(7.3)-(7.4), where the parameters have been identified on a set of 304L austenitic stainless steel

samples (Sudret et al. , 2003). The best-fit curve (median value) of the number-of-cycles-to-failure is

Nbf (S) = exp [(−2, 28 log(S − 185, 9) + 24, 06 )]. A thermo-mechanical analysis together with the mean

values of the parameters (See Table 7.1, column #3) is first carried out.

The Rainflow counting provides 33 cycles, from which 2 are leading to elementary damage, namely

S1 = 102.1 MPa, S2 = 190.6 MPa. Accordingly, the cumulated damage associated with one sequence of

loading is 5.98 10−6. Thus the codified design gives a life time of Ndet
seq = 1/5.98 10−6 = 167,200 sequences.

2.4.4 Probabilistic analysis

The parameters of the thermo-mechanical analysis are now described in terms of random variables. The

choice of the probability density functions is dictated by common practice. The mean value and coefficient

of variation of each parameter are given in Table 7.1.

The number-of-cycles-to-failure of the specimen is represented by a lognormal random variable (Eq.(7.3))

where the parameters in Eq.(7.4)) read: A = −2.28, B = 24.06, SD = 185.9, δ = 0.09. This corresponds

to:

NS(ω) = exp [(−2, 28 log(S − 185, 9) + 24, 06 ) (1 + 0, 09 ξ (ω))] (7.20)

where ξ (ω) is a standard normal random variable. The passage factors yielding the number-of-cycles-

to-failure of the structure are represented by random variables following a Beta distribution whose mean

values are respectively 20/2 = 10 (low cycle domain) and 2/1.19 = 1.68 (high cycle domain) and whose

coefficient of variation is 20 %. The lower bound of the distributions is zero and the upper bounds are

20 and 2 respectively.

Using this probabilistic input, it is possible to characterize the randomness of the cumulated damage

for a given life time, say 100,000 sequences of operating. The Latin Hypercube sampling technique was

applied using 1,000 samples. The mean value and standard deviation of the cumulated damage are 0.921

and 2.00 respectively, hence a coefficient of variation of 217 %. It is clear from this analysis that the large

scatter of the fatigue strength in the limited endurance domain yields a large scatter in the fatigue life

time of the structure. The approach allows to quantify the latter properly.

The reliability of the structure under consideration may now be studied as a function of the number of

sequences of operating Nseq. The limit state function is defined by:

g (Nseq,X) = 1−Nseq dseq(X) (7.21)

In this expression, vector X gathers all the input random variables as reported in Table 7.1. FORM is

used to compute the reliability index and the probability of failure. For Nseq = 100,000 sequences, the

results are: β = 0.68 ; Pf = 0.249. The coordinates of the design point (back-transformed into the

physical space) as well as the sensitivity factors are reported in Table 7.2 .

It is observed that the uncertainty related to the fatigue strength of the material is the most important

factor driving the reliability of the structure. Variable ξ is of course a resistance variable since its

design point value is below the median value. Then there are the Young’s modulus and the coefficient

of thermal expansion (which transform cycles of temperature in the pipe into stress cycles), the heat
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Table 7.2: Fatigue analysis of a pipe: probabilistic results for Nseq = 100, 000 sequences

Parameter Mean value Design point Importance factors α2
i (%)

Fatigue strength scatter ξ 0 -0.433 41.3

Young’ modulus E (MPa) 189,080 194,381 15.2

Thermal expansion coefficient α (K−1) 16.95 10−6 17.42 10−6 15.2

Heat transfer coefficient (W.K−1.m−2) 20,000 20,676 15.0

Passage factor γS
passage 1.68 1.863 11.1

Poisson’s ratio ν 0.3 0.302 1.3

Thermal conductivity λ (W.m−1.K−1) 16.345 16.182 0.6

Heat capacity ρCp (J/kg) 4 024,000 3,989,040 0.3

Inner radius Rint (m) 0.12728 0.12712 0.0

Thickness t (m) 0.00927 0.00926 0.0

Passage factor γN
passage 10 10 0.0

transfer coefficient (which transforms the peaks of temperature in the fluid into the peaks of temperature

at the pipe inner wall) and finally the passage factor γS
passage.

These four variables are demand variables since their value at the design point is above the median value.

All other random variables have negligible importance factors: this means that they could be considered

as deterministic in this kind of analysis. Note that the passage factor γN
passage has zero importance in the

present example because it does not enter the analysis at all: the obtained stress cycles are sufficiently

small so that only the “high cycle passage factor” γS
passage is used.
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Figure 7.3: Fatigue analysis of a pipe: reliability index (resp. the probability of failure) vs. life time Nseq

Finally a parametric study is carried out with respect to the required life time Nseq. The evolution of

both the reliability index and the probability of failure as a function of Nseq is plotted in Figure 7.3. This

figure would allow to regulate the use of the portion of pipe under consideration, if a target reliability

index was prescribed.



2. Thermal fatigue problems 165

2.5 Conclusions

Fatigue analysis of structural components in nuclear power plants is of crucial importance. The fatigue

phenomenon is random in nature due to the mechanisms responsible for crack initiation at the microscopic

scale. The present section proposes a probabilistic framework of analysis which aims at incorporating in

a rigorous manner all kinds of uncertainties appearing in the fatigue assessment.

In order to be easily understood by practitioners, the usual assessment rules codified in the French

regulatory guide have been taken as a baseline. In each step, sources of uncertainty have been identified

and a probabilistic model has been proposed. As a consequence, the cumulated damage (which is an

indicator of fatigue crack initiation) becomes random. Its randomness can be characterized a) in terms of

mean value and standard deviation b) in terms of probability of exceeding the threshold 1. Note that this

threshold could be modelled as a random variable as well in order to take into account model uncertainty

associated with Miner’s rule.

The pipe application example provides additional useful insight on the fatigue design. The first analysis

shows that the coefficient of variation of the cumulated damage is rather high (217 % in the application

example). Hence the well-known randomness on the fatigue life time of a structure in the high cycle

domain is quantified.

The reliability analysis allows to compute the probability of failure corresponding to crack initiation.

Sensitivity factors related to the use of FORM analysis may also be computed. They allow to rank the

input random variables according to their importance with respect to failure. Five important variables

have been identified, namely the fatigue strength of the material, the Young’s modulus and the coefficient

of thermal expansion, the heat transfer coefficient at the pipe inner wall and finally the passage factor

γS
passage. The other random variables (termed as “unimportant” from a probabilistic point of view) may

be considered as deterministic in subsequent analyses. Note that the very values of the sensitivity factors

should be taken with caution since they truly depend on the choice of the PDF of the input parameters

and their respective coefficients of variation.

Simple models have been retained in all steps of the analysis for the application example (deterministic

loading, thermo-mechanical 1D calculation, linear damage accumulation). More complex models can be

easily integrated in the framework, including non linear two- or three-dimensional finite element models).

The case of a random loading represented by a Gaussian random process has been dealt with in Guédé

et al. (2004). The computation takes place in the frequency domain in this case. Due to linearity, it is

possible to derive an analytical transfer function that yields the stress components as a function of the

temperature at each frequency. This transfer function used together with the power spectral density of

the fluid temperature provides the power spectral density of the stress. The latter is then transform into

the probability density function of the stress amplitudes, which directly enters the probabilistic analysis.

Details on this work can be found in Guédé (2005); Guédé et al. (2007).

Recently, a multiaxial fatigue model has been used by Schwob (2007) together with the probabilistic

fatigue framework developed above. A modified Papadopoulos criterion (Papadopoulos et al., 1997) has

been used in order to take into account stress gradients in complex sample structures such as bored or

notched plates. The parameters of the criterion have been identified by a stochastic inverse approach

such as those presented in Chapter 5.
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3 Cooling towers

3.1 Introduction

Natural-draught cooling towers are used in nuclear power plants as heat exchangers. These shell structures

are submitted to environmental loads such as wind and thermal gradients that are stochastic in nature.

Due to the complexity of the building procedure, uncertainties in the material properties as well as

differences between the theoretical and the real geometry also exist.

Structural reliability is well suited to the evaluation of the safety of these structures all along their

life time. A first application of structural reliability to cooling towers was presented by Liao and Lu

(1996). The first order second moment method was used together with an axisymmetric finite element

model. More recently, Mohamed et al. (2002) applied FORM together with a three-dimensional shell

finite element model.

Based on this preliminary work, the durability of cooling towers submitted to rebars corrosion induced by

concrete carbonation has been studied in Sudret and Pendola (2002); Sudret et al. (2002). The problem is

cast in the framework of time-variant finite element reliability analysis. A more efficient response surface-

based approach has been later developed in Sudret et al. (2005) by taking advantage of the linearity of

the peculiar model of the structure. This section summarizes these results.

3.2 Exact response surface for linear structures

The basic idea of response surfaces is to replace the exact limit state function g (x), which is known

implicitly through a finite element procedure, with an approximate, usually polynomial function g̃ (x),

the coefficients of the expansion being determined by means of a least-square minimization procedure.

In this section, a response surface is derived from mechanical considerations. Precisely, let us consider a

linear elastic finite element model of the structure with homogeneous material properties (mass density

ρ, Young’s modulus E, Poisson’s ratio ν, thermal dilatation coefficient α). Let us consider q different

mechanical load cases (e.g. self weight, applied pressure, etc.) defined by a load intensity λi and a load

pattern F i, i = 1, . . . , q (vector F i is the vector of nodal forces corresponding to a unit value of the load

intensity). Let λT be the intensity of the thermal load, e.g. the temperature increment with respect to

some reference state.

Furthermore, let us denote by U i, i = 1, . . . , q the displacement vector resulting from the load pattern

F i and unit load intensity λi = 1 (resp. UT the displacement vector resulting from a unit temperature

increment) applied to a structure with unit Young’s modulus and thermal dilatation coefficient. The

total displacement vector may be cast as (Sudret et al., 2005):

U = αλT UT +
1

E

q
∑

i=1

λiU i (7.22)

A similar expression can be derived for the internal forces (membrane forces and bending moments).

Suppose now that all unit response quantities (UT , {U i}qi=1) are computed from a finite element analysis.

Note that this requires a single assembling of the unit stiffness matrix K1, the computation of the unit

vectors of nodal forces (F T , {F i}qi=1), a single inversion of the unit stiffness matrix K−1
1 and (q + 1)

matrix-vector products
(

K−1
1 · F T ; K−1

1 · F i , i = 1, . . . , q
)

. Then Eq.(7.22) gives the displacement

vector analytically for any set of parameter (α,E, λT , {λi}qi=1), and the same holds for the internal forces

gathered in a vector S (U (X)).
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This implies that any limit state function based on these response quantities is defined analytically in

terms of the model parameters α,E, λT , {λi}qi=1:

g (t,X,U (X) ,S (U (X))) ≡ g̃ (t, α,E, λT , {λi}qi=1) (7.23)

Thus the finite element reliability analysis is decoupled into a single multi-load case elastic finite element

analysis providing unit response quantities, then a reliability analysis using an analytical limit state

function

3.3 Deterministic model of the cooling tower

The cooling tower under consideration is a shell structure with axisymmetric geometry depicted in Fig-

ure 7.4. The height of the tower is 165 m, the meridian line is described by the shell radius Rm(z) as a

function of the altitude z:

Rm(z) = −0.00263 z + 0.2986

√

(z − 126.74)
2

+ 2694.5 + 23.333 (7.24)

The shell is supported by 52 pairs of V-shaped circular columns with radius 0.5 m. The shell thickness is

varying with z from 21 cm to 120 cm. The structure is modelled by means of EDF’s finite element code

Code Aster. The mesh comprises 12,376 9-node isoparametric shell elements. The reinforced concrete is

modelled as an homogeneous isotropic elastic material.

Figure 7.4: Cooling tower – scheme and mesh used in the finite element analysis

When the power plant is in service, the cooling tower is submitted to a combination of loads, namely the

self-weight (corresponding to a mass density ρ), the wind pressure qw(z, θ) (which is codified in French

Standard NV65 and depends both on the altitude z and azimuth θ), the internal depression Pint due to

air circulation in service (which is supposed to be constant all over the tower and is equal to -0.4 Pmax,

Pmax being the maximal wind pressure at the top of the cooling tower), and finally the thermal gradient

∆T within the shell thickness (see detailed expressions in Sudret et al. (2005)).

3.4 Limit state function and probabilistic model

3.4.1 Deterministic assessment of the structure

The serviceability of the cooling tower as a reinforced concrete structure is assessed according to the

French concrete design code BAEL (2000). In each node of the mesh, the membrane forces and bending

moments in each direction are compared to the strength of a one-meter wide concrete section.
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Figure 7.5: Cooling tower – Load carrying capacity diagram for a concrete section and associated limit

state function

Practically speaking, the membrane and bending forces (Nθθ, Mzz) used to assess the circumferential

reinforcement are reported in the load carrying capacity diagram (Figure 7.5), which shows the combi-

nations of the internal forces that can be taken by the concrete section. This diagram depends on the

following parameters: geometry of the concrete section (width of 1 m, height equal to the shell thickness),

rebars diameter and density, concrete cover, concrete compressive strength and steel yield stress. If the

representative point lies inside the diagram, the design criterion is satisfied for the section under consid-

eration. This assessment is carried out at each node of the structure. The same procedure is applied

using the internal forces (Nzz, Mθθ) for assessing the longitudinal reinforcement.

3.4.2 Limit state function

The limit state function is defined as the algebraic distance from the point representing the internal forces

to the boundary of the load carrying capacity diagram, this distance being measured along the radial

line, as shown in Figure 7.5. This leads to the following expression:

g(X) = (h2N2
ult(X) +M2

ult(X))− (h2N2
θθ(X) +M2

zz(X)) (7.25)

where h is the shell thickness, (Nθθ, Mzz) are the internal forces resulting from the finite element computa-

tion at the node and (Nult,Mult) is obtained as the intersection between the radial line [(0, 0); (hNθθ,Mzz)]

and the diagram boundary.

3.4.3 Probabilistic model of the input parameters

The type and parameters of the random variables used in the analysis are listed in Table 7.3. Two variables

are defined as functions of others, namely the concrete Young’s modulus and the internal depression in

service.

As a consequence, eight independent random variables are used. These random variables appear implicitly

in Eq.(7.25) as follows:

• E, ρ, α, Pc, Pint,∆T appear in the finite element computation, hence in (Nθθ , Mzz).

• fy, fcj
, d0, e appear in the initial load carrying capacity diagram.
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Table 7.3: Cooling tower – Definition of the random variables

Random variable Type Mean value CV

Concrete mass density ρ lognormal 2,500 kg/m3 10 %

Concrete thermal dilatation coefficient α lognormal 10−5/K 10 %

Wind pressure Pc Gaussian 350 Pa 30 %

Internal depression Pint −0.813Pc

Difference between the inside Gaussian 12˚C 20 %

and outside concrete temperatures ∆T

Steel yield stress fy lognormal 420 MPa 5 %

Concrete compressive strength fcj
lognormal 40 MPa 15 %

Concrete Young’s modulus E 11, 000 3
√

fcj

Rebars initial diameter d0 Beta([0.009, 0.011m]) 0.01 m 5 %

Concrete cover e Beta([0, 0.1m]) 0.025 m 30%

The internal forces (Nθθ,Mzz) associated with each unit load case are computed in each node once and for

all and stored in a database. The reliability problem is then solved using the general purpose reliability

code PhimecaSoft (Phimeca Engineering SA, 2004; Lemaire and Pendola, 2006). The FORM method

is used. In each iteration of the optimization leading to the design point, a realization of the random

variables is provided by PhimecaSoft to a routine that computes the value of the limit state function

from the finite element results stored in the database. The coordinates of the design point, the reliability

index and the importance factors are provided as end results.

3.5 Point-in-space reliability analysis

3.5.1 Initial time-invariant analysis

In a first analysis, a point-in-space reliability problem is considered. A deterministic finite element run

with mean values of the parameters is carried out. The limit state function Eq.(7.25) is evaluated at each

node of the mesh. The critical point is defined as the node where g(µX) takes its minimal value. Then

the reliability analysis is carried out by evaluating the limit state function in this critical point all along

the analysis.

The initial reliability index at time t = 0, i.e. when corrosion of the rebars has not started, is β = 4.36,

corresponding to a probability of failure P 0
f,FORM = 6.56× 10−6. The coordinates of the design point are

reported in Table 7.4.

Table 7.4: Cooling tower – Point-in-space reliability analysis at initial time instant – Coordinates of the

design point and importance factors

Random variable Design point Importance factor (%)

Difference between the inside-

and outside concrete temperatures ∆T 19.10◦C 46.0

Concrete thermal dilatation coefficient α 1.26E-05/◦C 29.0

Rebars initial diameter d0 9.23 mm 12.3

Steel yield stress fy 396.7 MPa 6.6

Concrete compressive strength fcj
46.4 MPa 6.1

As expected, d0 and fy are resistance variables since the design point is below the median value. Variables

∆T and α are demand variables since the design point is above the median value. The concrete compres-

sive strength fcj
should be physically a resistance variable. However, it is linked to the concrete Young’s
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modulus, which is an important demand variable due to the thermal loading. The addition of these two

opposite effects globally makes fcj
a demand variable. The most important variables are the temperature

gradient (46.0%), the concrete thermal dilatation coefficient (29.0%), the concrete cover (12.3%), the

steel yield stress (6.6%) and the concrete compressive strength (6.1%). Note that the concrete cover and

the wind pressure have zero importance in this initial reliability analysis.

3.5.2 Time-variant analysis

The concrete carbonation and associated corrosion of the rebars in the shell is now considered. The

carbonation model presented in Chapter 6, Section 8.4.1 is used. The parameters of the model, namely

the coefficient of diffusion of carbon dioxide in dry concrete DCO2
, the carbon dioxide concentration

in the surrounding air C0, the binding capacity a and the corrosion rate icorr are modelled by random

variables.

The time-variant reliability problem under consideration is a right-boundary problem as defined in Chap-

ter 6, Section 2.3. Indeed the limit state function is a distance between a point representing the internal

forces and the boundary of the load carrying capacity diagram (see Eq .7.25). The point representing the

internal forces does not change in time, since it results from a finite element analysis whose parameters are

realisations of the random variables E, ρ, α, Pc, Pint,∆T. In contrast, the load carrying capacity diagram

monotonically shrinks due to the reduction of the rebars diameter. Thus the distance keeps decreasing in

time and the limit state function fulfills the criterion for right-boundary problems. As a consequence, the

evolution in time of the time-variant probability of failure is identical to the instantaneous probability of

failure: Pf (0, t) = Pf,i(t) (see Chapter 6, Section 3.2).

Figure 7.6: Cooling tower – Point-in-space reliability problem – evolution in time of the reliability index

The initiation time for corrosion Tinit = a e2

2 C0 DCO2
has been simulated by MCS. Its mean value is 26.5 years

and its standard deviation 7.1 years (CV= 26.8%). It may be well approximated by a lognormal distri-

bution.

The evolution in time of the reliability index is plotted in Figure 7.6. The curve presents a plateau for

the first 25 years which corresponds to the initiation of corrosion. The reliability index sharply decreases

around 25 years. Then it further decreases smoothly and monotonically.

The evolution in time of the importance factors has been investigated as well. Results are reported in

Figure 7.7. During the initiation phase, the important variables are basically those obtained at t = 0, i.e.



3. Cooling towers 171

Figure 7.7: Cooling tower – Point-in-space reliability problem – evolution in time of the importance

factors

∆T, α, d0, fy, fcj
. After corrosion has started, the cumulated importance of these variables reduces to

40%. Then the most important variables are the corrosion current density and the concrete cover. The

importance of the corrosion current density keeps increasing in time up to a value of 50% at t = 70 years

while the importance of all other variables decreases accordingly.

3.6 Space-variant reliability analysis

3.6.1 Problem statement

The above analysis pertains to the class of point-in-space reliability analysis. Indeed the node where the

limit state function is evaluated (critical point) is fixed, being determined once and for all from a prior

deterministic analysis using the mean values of the parameters. However it is expected that the critical

point changes when the parameters vary.

Accordingly, another failure criterion can be defined as follows: failure occurs if the limit state function

takes a negative value in any point of the shell (in practice, any node of the mesh). The limit state

function then reads:

g2(X) = min
all nodes

{

(h2N2
ult(X) +M2

ult(X))− (h2N2
θθ(X) +M2

zz(X))
}

(7.26)

In this case, in each iteration of the optimization leading to the design point, a routine computes the

value of the g-function from the finite element results stored in the database in each node and takes the

minimal value over the whole set. Thus the critical node may change from one iteration to another.

Due to the “min” function in Eq.(7.26), the limit state function is not continuously differentiable in all

points. In order to obtain reliable results, importance sampling (IS) is used. A FORM analysis is carried
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out first. The obtained design point (which may not be reliable due to the differentiability issue) is

used as the center of the sampling density. Note that even if the design point is wrong or if there are

several design points, the IS results may be taken confidently provided the coefficient of variation of the

simulation is sufficiently small.

3.6.2 Results

The space-variant reliability analysis has been carried out first at the initial instant t =0 using FORM.

The reliability index obtained from this analysis is equal to 1.89 corresponding to a probability of failure

of 2.92×10−2. The result is confirmed by importance sampling using 500 realizations (the c.o.v. of the

simulation being 7.5 %). The probability of failure is Pf,IS = 2.17×10−2. The equivalent reliability index

βIS = −Φ−1 (Pf,IS) is equal to 2.02, which is slightly greater than the value obtained by FORM.

This result is about 4 decades greater than the result obtained in the point-in-space reliability analysis.

This phenomenon has been already pointed out in the context of the space-variant reliability analysis of

a damaged plate by Der Kiureghian and Zhang (1999). However, the importance factors obtained from

this space-variant analysis are rather close to those obtained in the former analysis.

Figure 7.8: Cooling tower – Space-variant reliability problem – evolution in time of the reliability index

The time-variant space-variant reliability analysis has been carried out by importance sampling (Fig-

ure 7.8). The sampling density is the one used at the initial instant t = 0. The decrease of the reliability

index in time is similar to that obtained in the point-in-space analysis.

3.7 Conclusion

The durability of cooling towers submitted to concrete carbonation and induced rebar corrosion has been

investigated using the framework of finite element reliability analysis. In the linear domain, mechanical

considerations allow one to derive an exact (non linear) response surface in terms of model parameters

under certain conditions which are sufficiently versatile for applications in basic design. A single finite

element analysis using unit values of material properties and load parameters provides unit- displacement

vectors and internal forces that are stored in a database. Then the limit state function is given an

analytical form, which allows a fast computation of the probability of failure.
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The point-in-space and space-variant probabilities of failure revealed significantly different. This shows

the importance of selecting properly the failure criterion. In practice, the extent of damage would probably

be the most relevant quantity to consider for the long-term assessment of cooling towers. The methods

developed in Chapter 6, Section 8 may be applied to this aim.

4 Non linear fracture mechanics

4.1 Introduction and deterministic problem statement

Pipes in nuclear power plants are subject to thermal and mechanical loads which can lead to the initiation

and the propagation of cracks. When a crack is observed, it is important to know whether the structure

has to be repaired or if it can be proven that this crack will not propagate. In this section, various

stochastic finite element methods are compared for solving the associated structural reliability problem.

The results are reported from the Ph.D thesis of Berveiller (2005) and were originally published in

(Berveiller et al., 2005a).

Consider an axisymmetrically cracked pipe subject to internal pressure and axial tension (Figure 7.9).

The inner radius of the pipe is Ri = 393.5 mm, its thickness is t = 62.5 mm. The length of pipe under

consideration in the model is L = 1000 mm and the crack length is a = 15 mm.

Figure 7.9: Non linear fracture mechanics – sketch of the axisymmetrically cracked pipe

The applied internal pressure is P = 15.5 MPa. An axial tensile load σ0 = P
R2

i

(Ri + t)2 −R2
i

due to end

effects of the pressure is superimposed . An additional tensile stress σt, whose intensity varies from 0 up

to 200 MPa, is also applied. It is considered as a deterministic parameter in the analysis. Indeed, the

evolution of the probability of failure (where failure means crack propagation, see below) with respect

to this loading parameter is of interest. The mesh of half of the structure (due to symmetry) is given in

Figure 7.10.

The pipe is made of steel, whose constitutive behavior is described by the Ramberg-Osgood law (Lemaitre

and Chaboche, 1990). The one-dimensionnal relationship between strain ε and stress σ reads:

ε =
σ

E
+ α

σy

E

(

σ

σy

)n

(7.27)
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Figure 7.10: Non linear fracture mechanics – mesh of the axisymmetrically cracked pipe

In this expression, E denotes the Young’s modulus of steel, σy is the yield strength, n is the strain

hardening exponent and α is the Ramberg-Osgood coefficient (Figure 7.11).
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Figure 7.11: Non linear fracture mechanics – strain/stress curve of the steel under consideration

Of interest in the analysis is the so-called crack driving force J , which allows to check whether an existing

crack is likely to propagate under a given loading. This quantity (which is obtained by the Rice integral

in fracture mechanics) is directly computed by the finite element code:

J(σt) =M(E, σy, n, α, σt) (7.28)

4.2 Probabilistic description of the input parameters

In this example, the constitutive law of the material is supposed to be uncertain. As a consequence, M = 4

mutually independent random variables are considered (see Eq.(7.27)). The probabilistic description of

these random variables is given in Table 7.5.

Table 7.5: Non linear fracture mechanics – description of the input random variables

Parameter Notation Distribution Mean Coef. of Var.

Young’s modulus E lognormal 175,500 MPa 5%

Ramberg-Osgood coefficient α Gaussian 1.15 13%

Strain hardening exponent n Gaussian 3.5 3%

Yield strength σy lognormal 259.5 MPa 3.8%
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Due to the randomness in the input parameters, the crack driving force J becomes random. A third

order Hermite polynomial chaos expansion is considered (p = 3). For this purpose, the input random

vector X = {E,α, n, σy}T is first transformed into a standard normal random vector Ξ.

The third order PC expansion of the crack driving force denoted by JPC reads, for each value of the

applied tensile stress σt:

JPC(ξ, σt) =

P−1
∑

j=0

Jk(σt)Ψj(ξ) (7.29)

where {Jj(σt), j = 0, . . . , P − 1} are the unknown PC coefficients and P =
(

3+4
3

)

= 35 is the number of

those unknown coefficients.

4.3 Statistical moments of the crack driving force

The statistical moments of the response are first computed for σt = 200 MPa using various non intrusive

methods. Table 7.6 gathers the moments of J up to order 4 obtained by projection methods. A reference

result is obtained by crude Monte Carlo simulation of the deterministic problem (1,000 samples were

used). Latin Hypercube sampling is first applied to compute the PCE coefficients using 500, 1,000 and

1,500 samples respectively. A full quadrature scheme of third and fourth order is then applied.

Table 7.6: Non linear fracture mechanics – statistical moments of J for σt = 200 MPa (Latin Hypercube

sampling)

MC Sampling Latin Hypercube Quadrature

# FE Runs 1000 500 1000 1500 34 44

Mean 71.38 71.63 71.65 71.65 71.64 71.65

Std. dev. 7.93 10.11 9.82 10.74 7.84 7.84

Skewness 0.40 2.41 -0.49 2.26 1.23 1.23

Kurtosis 3.18 39.28 9.67 22.09 6.86 6.85

Then regression is applied using a deterministic experimental design based on the roots of the Hermite

polynomials for various numbers of collocation points in the range 35 to 256. Results are reported in

Table 7.7.

Table 7.7: Statistical moments of J for σt = 200 MPa

Regression

# FE Runs 35 70 105 140 256

Mean 51.20 66.48 71.64 71.64 71.64

Std. dev. 48.20 26.39 7.81 7.81 7.81

Skewness -2.90 -4.86 0.32 0.32 0.32

Kurtosis 18.99 45.92 3.20 3.21 3.21

When considering the projection method, Latin Hypercube sampling does not give accurate results what-

ever the size of the sample set used here (even the standard deviation is poorly estimated). A larger

number of samples would probably improve the results. The results obtained by the full quadrature

schemes are almost identical. This means that the PCE expansion of the response has a number of

higher order terms close to zero that do not influence the computation of the moments when they are

computed using a low order quadrature scheme ν = (3, 3, 3, 3).
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As far as the regression method is concerned, the convergence is achieved when 105 collocation points

are used. This confirms the thumb rule by Berveiller (2005), which says that the size of the experimental

design should be (M − 1) × P . The results are rather accurate compared to the reference Monte Carlo

results.

4.4 Reliability analysis of the cracked pipe

In order to evaluate the structural integrity of the pipe, the probability that the crack driving force J

exceeds the ductile tearing resistance J0.2 is to be computed:

Pf (σt) = Prob(J(σt) ≥ J0.2) (7.30)

The associated limit state function reads:

g(J0.2,X, σt) = J0.2 − J(E, σy, n, α, σt) (7.31)

The ductile tearing resistance J0.2 is modelled by a lognormal random variable (mean value 52 MPa.mm

and coefficient of variation 18%). A reference solution of (7.30) is obtained using FORM and a direct

coupling between the finite element code Code Aster and the reliability code Proban (Det Norske Veritas,

2000).

On the other hand, the stochastic finite element approximation JPC =
∑34

j=0 Jk(σt)Ψk(ξ) is post-processed

in order to evaluate the probability of failure associated with the PC-based limit state function:

gPC(J0.2, ξ, σt) = J0.2 −
∑

Jk(σt)Ψk(ξ) (7.32)

FORM is first applied: indeed, the approximate limit state function in this case is polynomial in standard

normal variables making this computation inexpensive. Then importance sampling aroung the design

point is used in order to get accurate values of Pf (a coefficient of variation of about 5% is obtained using

1,000 simulations).

Figure 7.12 shows the evolution of the logarithm of the probability of failure as a function of the applied

tensile stress for PC expansion obtained by quadrature or LHS 1. Each curve corresponds to a particular

projection scheme.

Latin Hypercube sampling is applied using 500, 1,000 and 1,500 samples respectively. It seems that

even the largest sample size considered here (i.e. 1,500 sample) is not large enough to compute accurate

values of the PC coefficients that would lead to an accurate estimation of the failure probability (except

for relatively high values, say Pf > 0.1). As far as the quadrature method is concerned, selecting 3

or 4 integration points in each dimension provides the same results, which compare very well with the

reference solution.

Figure 7.13 shows the evolution of the logarithm of the probability of failure as a function of the applied

tensile stress σt using the regression method. Each curve corresponds to a particular regression scheme.

Here again, using 105 points (i.e. 3 times the size of the polynomial chaos expansion) allows us to get

accurate results in the range Pf ∈ [10−8, 1]. The curves obtained using more than 105 points are one and

the same whatever the load parameter σt.

In terms of computational cost, the direct coupling requires 542 calls to the finite element code to compute

the “reference” curve plotted in Figures 7.12 and 7.13 (each call means a full non linear finite element

analysis under increasing tensile stress σt). This is more than 5 times the CPT required by the regression

method using 105 points. The quadrature method is more than 6 times faster than the reference solution

since only 81 finite element runs are sufficient to get accurate results.

1For the sake of clarity, remark that LHS is used here as a means to evaluate the PC coefficients, and not as a means to

directly compute the probability of failure.
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Figure 7.12: Logarithm of the failure probability vs. tensile stress using the projection method
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Figure 7.13: Logarithm of the failure probability vs. tensile stress using the regression method

The main difference between the direct coupling and the stochastic finite element approach should be

emphasized here: the direct coupling analysis is started from scratch for each new value of σt, since the

runs used by the iterative algorithm in FORM analysis at a lower value of σt cannot be reused in a



178 Chapter 7. Durability of industrial systems

subsequent analysis at another σt (although the current design point at σt is used as a starting point for

the next FORM analysis). In contrast, the deterministic runs of the finite element model that are used in

the SFE approaches are carried out for all values of the loading parameter σt at once, and the regression

or quadrature post-processing is applied afterwards.

Table 7.8: Reliability of a cracked pipe – Importance factors (%) (σt = 200 MPa)

Variable Direct Coupling Regression (105 points)

J0.2 74.2 74.2

E 5.6 5.6

α 13.6 13.6

n 0.2 0.2

σy 6.4 6.4

To conclude this section, a sensitivity analysis was performed by FORM using either the finite element

modelM or its PC expansion (regression approach). The importance factors obtained from both models

are reported in Table 7.8. The obtained values are identical within less than 0.1%. This means that the

SFE approach clearly represents the limit state function in a very accurate manner around the design

point.

4.5 Conclusion

This third application example has shown the application of non intrusive stochastic finite element meth-

ods to an industrial non linear finite element model. In this example, both the regression and the full

quadrature approaches yielded accurate results. It is likely that the Smolyak quadrature would lead to

accurate results as well. Unfortunately it was not available to the author at the time when this application

example was originally published.

Recently, the non intrusive methods have been applied to other industrial problems as a routine tool for

uncertainty propagation and sensitivity analysis. Berveiller et al. (2007) makes use of polynomial chaos

expansions together with Bayesian updating (see Chapter 5, Section 3) in order to predict the long-term

creep deformation in concrete containment vessels of a nuclear power plant.

Berveiller et al. (2007) considers the sensitivity (i.e. the PC-based Sobol’ indices, see Chapter 4, Sec-

tion 5.4) of the creep deformations to the parameters of the concrete drying model.

Yameogo et al. (2007) considers PC-based Sobol’ indices in the simulation of the thermo-mechanical

behavior of fuel rods in nuclear reactors.

5 Conclusion

The various application examples reported in this chapter have shown all the potential of the methods

described in the previous chapters.

The probabilistic framework for fatigue analysis is promising, provided new models are incorporated,

such as other damage variables (e.g. based on cumulated plastic strains obtained from a non linear finite

element analysis). The specific statistical work which was required to derive probabilistic S-N curves

could be fruitfully applied to other types of materials. However, since it is based on a statistical model

which is rather different from (and sometimes not compatible with) the current French standard for the

analysis of fatigue data, additional work is required to make it accepted by the community.
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The study of cooling towers has shown that as complex a limit state function as that derived from

a three-dimensional finite element analysis coupled with load carrying capacity diagrams is affordable

using nowadays’ power of computers. The great difference between point-in-space and space-variant

probabilities of failure has been also illustrated on this example.

Finally, the use of spectral methods in industrial applications using non linear models has proven accurate

and efficient. It is the opinion of the author that the polynomial chaos representation will become an

everyday tool of the engineer in the near future. Indeed, it offers a cost-efficient smooth representation

of complex models that could not be directly dealt with when using traditional uncertainty propagation

methods that require a large number of model runs.





Chapter 8

Conclusion

Methods for modelling uncertainties in physical systems and propagating them through the associated

mathematical models have been reviewed in this thesis. A general framework has been proposed, which

consists in three main steps, namely the deterministic modelling, the uncertainty quantification and the

uncertainty propagation, the latter being possibly linked with sensitivity analysis. Classical methods in

probabilistic engineering mechanics and structural reliability have been reviewed in Chapters 2 and 3

respectively. The original contributions of the author to the field have been mainly presented in Chap-

ters 4–7.

Spectral methods Chapter 4 has presented a state-of-the-art on spectral stochastic finite element

methods, with an emphasis on non intrusive methods. The power of the spectral methods for moment,

reliability and sensitivity analysis has been demonstrated. The advantage of the non intrusive approach

lies in the fact that generic tools are developed that are independent from the physical system under

consideration. Moreover, legacy codes can be used in conjonction with these methods without any

complex implementation.

As mentioned in the presentation of regression methods, the polynomial chaos expansions may be viewed

as particular metamodels. Other classes of metamodels such as wavelet decompositions or support vec-

tor machines should be investigated in the future, especially when non smooth models are considered.

Techniques for assessing the accuracy of such metamodels with respect to their use are required.

The computational cost of polynomial chaos expansions remains an issue for large-scale industrial systems

involving a large number of random variables, even if parallel computing on clusters of processors may be

envisaged. The adaptive schemes investigated recently in the literature (either for regression or quadrature

approaches) should help solve the curse of dimensionality.

It is the belief of the author that spectral methods will soon be a daily tool of the engineer in all industrial

sectors where robust design is a key issue. In this sense it may become some day as popular as the finite

element methods pioneered in the early 60’s by Clough, Argyris and Zienkiewicz, which are nowadays

inescapable in the design of complex mechanical systems.

Bayesian updating and stochastic inverse problems The Bayesian updating techniques addressed

in Chapter 5 are promising for improving the predictions of the behaviour of complex systems, especially

when monitoring data is gathered in time. The Markov chain Monte Carlo simulation is a versatile tool,

which reveals however computationally expensive. Efforts to reduce this cost by using metamodels are

necessary in this matter.

From another viewpoint, the stochastic inverse methods aim at characterizing the aleatoric uncertainty

of some input quantity from the measurements of the response of a collection of real systems. A lot of
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work remains to make the proposed methods computationally more efficient and more stable. In practice

their coupling with metamodels is necessary to make them applicable to complex systems. They will be

of utmost interest in the identification of constitutive laws (including elasto-plastic laws, fatigue criteria,

damage laws, etc.) in cases when experimental scattering is not negligible.

Time and space-variant reliability methods Chapter 6 has reviewed some techniques for solving

time-variant reliability problems. The PHI2 method is a refreshed presentation of a system reliability

approach developed in the mid 90’s. It is believed that this presentation, which clearly casts the problem

in terms of time-invariant problems, may be more attractive than the asymptotic method.

Space-variant reliability is not yet as mature as time-variant reliability. It should be an important

research topic in the near future. It has been observed that it should be incorporated in the analysis of

deteriorating systems for the sake of efficient maintenance policies. Such problems require that the spatial

variability of the input parameters is characterized. Experimental programs focusing on this aspect shall

be devised in the future to feed these models.

Diffusion in the industrial applications Finally the application examples presented in Chapter 7

have shown that the methods presented all along this report are not limited to academic examples and

that they are sufficiently mature to deal with complex industrial systems.

The interest in the proper treatment of uncertainties has grown up dramatically in the last five years

in France, both in the academia and in the industry. This trend will amplify if the education of young

engineers and scientists is fostered in this direction. This is not an easy task since the field is at the

boundary of mechanics, statistics and probability theory, and may be repulsive to some people for this

reason. Hopefully this report will help go beyond these prejudices and spread these fertile ideas.



Appendix A

Classical distributions and Monte

Carlo simulation

1 Classical probability density functions

1.1 Normal distribution

A Gaussian random variable X ∼ N (µ, σ) is defined by two parameters, namely its mean value µ and its

standard deviation σ (σ > 0). Its support is DX = R and its probability density function (PDF) reads:

fX(x) =
1

σ
ϕ

(

x− µ
σ

)

(A.1)

where the so-called standard normal PDF ϕ(x) associated with X ∼ N (0, 1) reads:

ϕ(x) =
1√
2π

e−x2/2 (A.2)

Accordingly, the cumulative distribution function (CDF) of X ∼ N (µ, σ) reads:

FX(x) = Φ

(

x− µ
σ

)

(A.3)

where Φ(x) denotes the standard normal CDF defined by:

Φ(x) =

∫ x

−∞

1√
2π

e−x2/2 dx (A.4)

The skewness coefficient of a Gaussian random variable is δ = 0 (symmetrical PDF) and its kurtosis

coefficient is κ = 3.

1.2 Lognormal distribution

A lognormal random variable X ∼ LN (λ, ζ) is such that its logarithm is a Gaussian random variable:

logX ∼ N (λ, ζ). In other words, denoting by ξ a standard normal variable, one gets:

X = exp(λ+ ζ ξ) (A.5)
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The support of a lognormal distribution is ]0,+∞[ and its PDF reads:

fX(x) =
1

ζ x
ϕ

(

log x− λ
ζ

)

(A.6)

Its CDF reads:

FX(x) = Φ

(

log x− λ
ζ

)

(A.7)

Its mean value µ and standard deviation σ respectively read:

µ = exp(λ+ ζ2/2)

σ = µ
√

eζ2 − 1
(A.8)

Conversely, if the mean value and the standard deviation are known, the parameters of the distribution

read:

λ = log
µ√

1 + CV 2

ζ =
√

log(CV 2 + 1)

(A.9)

where CV = σ/µ is the coefficient of variation of X.

1.3 Uniform distribution

A uniform random variable X ∼ U(a, b) is defined by the following PDF (b > a):

fX(x) = 1/(b− a) for x ∈ [a, b] , 0 otherwise (A.10)

Its CDF reads:

FX(x) =
x− a
b− a for x ∈ [a, b] , 0 otherwise (A.11)

Its mean value and standard deviation read:

µ =
a+ b

2

σ =
b− a
2
√

3

(A.12)

Its skewness coefficient is δ = 0 and its kurtosis coefficient is κ = 1.8.

1.4 Gamma distribution

A random variable follows a Gamma distribution G(κ, λ) if its PDF reads:

fX(x) =
λk

Γ(k)
xk−1e−λx for x ≥ 0 , 0 otherwise (A.13)

where Γ(k) is the Gamma function defined by:

Γ(k) =

∫ ∞

0

tk−1e−t dt (A.14)

Its CDF reads:

FX(x) = γ(k, λx)/Γ(k) for x ≥ 0 , 0 otherwise (A.15)
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where γ(k, x) is the incomplete Gamma function defined by:

γ(k, x) =

∫ x

0

tk−1e−t dt (A.16)

Its mean value and standard deviation read:

µ = k/λ

σ =
√
k/λ

(A.17)

Its skewness and kurtosis coefficients read:

δ = 2/
√
k

κ = 3 + 6/k
(A.18)

Note that the case k = 1 corresponds to the so-called exponential distribution whose PDF and CDF

respectively read:

fX(x) = λe−λx , FX(x) = 1− e−λx for x ≥ 0 , 0 otherwise (A.19)

1.5 Beta distribution

A random variable follows a Beta distribution B(r, s, a, b) if its PDF reads:

fX(x) =
(x− a)r−1(b− x)s−1

(b− a)r+s−1B(r, s)
for x ∈ [a, b] , 0 otherwise (A.20)

where B(r, s) is the Beta function defined by:

B(r, s) =

∫ 1

0

tr−1(1− t)s−1 dt =
Γ(r)Γ(s)

Γ(r + s)
(A.21)

Its CDF reads:

fX(x) =
1

(b− a)r+s−1B(r, s)

∫ x

a

(t− a)r−1(b− t)s−1 dt for x ∈ [a, b] , 0 otherwise (A.22)

Its mean value and standard deviation respectively read:

µ = a+ (b− a) r

r + s

σ =
b− a
r + s

√

r s

r + s+ 1

(A.23)

1.6 Weibull distribution

A random variable follows a Weibull distribution W(α, β) if its CDF reads:

FX(x) = 1− exp(−
(x

α

)β

) for x ≥ 0 , 0 otherwise (A.24)

Consequently, its PDF reads:

fX(x) =
β

α

(x

α

)β−1

exp(−
(x

α

)β

) for x ≥ 0 , 0 otherwise (A.25)

Its mean value and standard deviation respectively read:

µ = αΓ(1 + 1/β)

σ = α
[

Γ(1 + 2/β)− Γ(1 + 1/β)2
]1/2

(A.26)
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2 Monte Carlo simulation

2.1 Introduction

Monte Carlo simulation has emerged at the end of World War II as a means for solving the problem of

neutronic diffusion in fissible materials (Metropolis and Ulam, 1949; Metropolis, 1987). The dramatic

growth of computer capabilities in the last two decades, and especially the techniques of parallel and

distributed computation have renewed the interest in this topic. It has become a generic tool that is

now used in many domains of science and engineering. For a comprehensive approach of the method, the

reader is referred to Rubinstein (1981).

Monte Carlo simulation consists first in producing an artificial sample set of numbers that “look like”

they were random. They are generated by a purely deterministic algorithm. Once the series of numbers

is available, the model is run for each and any sample. The obtained results form a pseudo-random set

of outcomes of the response quantity of interest Y . This set is then used to compute estimators of the

statistics of interest : mean value, standard deviation, quantiles, PDF, CDF, etc.

The generation of uniform random numbers is first described. Then the transforms that allow to simulate

according to a prescribed PDF are presented.

2.2 Random number generators

The classical algorithms for simulating random numbers produce sequences of numbers that are asymp-

totically uniformly distributed over the interval [0, 1] (Saporta, 2006, Chap. 15). The algorithm is usually

initialized by a seed and produces then a periodic sequence. The efficiency of such a simulator is evaluated

with respect to the period of the sequence (which has to be as large as possible), the uniformity of the

samples and their respective independency.

The linear congruential generators (Press et al., 2002, Chap. 7) are easy-to-implement algorithms that

have been used a lot in the early ages of computer science. Starting from a seed I0, the algorithm provides

a periodic sequence of integers:

Ii+1 = a Ii + b mod (m) (A.27)

from which real numbers in the range [0, 1] are obtained

ui =
Ii

m− 1
(A.28)

The period is at most equal to m, but may be far smaller, depending on the choice of the constants a

and b. Usually m is selected according to the type of processor of the computer at hand, i.e. m = 2p for

a p-bit processor, since the “mod” operation in (A.27) is free in this case. This type of random number

generator is implemented in the built-in rand function on Unix systems. The values a = 1, 664, 525, b =

1, 013, 904, 223 are widely used, as reported in Press et al. (2002). Note that the linear congruential

generators are known to produce sample points that lie on hyperplanes, when used in high dimensional

sampling, which implies that there is some unwanted correlation between the points.

Recently, the so-called Mersenne-Twister algorithm has been proposed by Matsumoto and Nishimura

(1998). It is based on bit manipulation in the binary representation of numbers. Its period is proven to

be as large as 219937 − 1. It has a high order of dimensional equidistribution (up to M = 623 dimen-

sions) as opposed to linear congruential generator. Finally it is as fast as the other common random

number generators. Recent versions of the algorithm including a 64-bit implementation can be found at

http://www.math.sci.hiroshima-u.ac.jp/ m-mat/MT/emt.html.
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2.3 Non uniform sampling

In practice, the input random variables to be simulated have a prescribed PDF which is not uniform over

[0, 1]. The acceptance / rejection method is a powerful approach that can be used in general cases. The

transformation method, which is based on the following lemma, is efficient when a closed-form expression

of the inverse cumulative distribution function exists.

Lemma A.1. Let X be a continuous random variable with prescribed CDF FX(x). The random variable

U = FX(X) has a uniform distribution over [0, 1].

Proof : By definition of the CDF, U is defined on the range [0, 1]. The PDF of U = FX(X)

satisfies fU (u) = fX(x) Jx,u where Jx,u is the Jacobian of the transform u 7→ x = F−1
X (u) which

is equal to 1/fX(x). Thus fU (u) = 1. ⋄

The following algorithm for generating a sample set {x(1), . . . , x(n)} according to a sampling density

fX(x) straightforwardly follows:

1. generate a sample set {u(1), . . . , u(n)} according to the uniform distribution over [0, 1].

2. back-transform the sample points one-by-one:

x(i) = F−1
X (u(i)) i = 1, . . . , n (A.29)

The algorithm is illustrated in Figure A.1, where a uniform sample set of 1,000 points has been used.

Figure A.1: Simulation of a Weibull random variable by the inverse CDF method

A particular algorithm may be used in order to generate standard normal Gaussian random variables,

due to a result by Box and Muller (1958).

Lemma A.2. Let U1, U2 be two independent random variables uniformly distributed over ]0, 1]. The

variables ξ1, ξ2 defined in Eq.(A.30) are independent standard normal random variables.

ξ1 =
√−2 logU1 sin (2πU2)

ξ2 =
√−2 logU1 cos (2πU2)

(A.30)

Proof : Let us denote by fU (u1, u2) the joint probability density function of U = {U1, U2}
T:

fU (u1, u2) = 1[0,1](u1)1[0,1](u2) (A.31)

The joint probability density function of Ξ = {ξ1, ξ2}
T reads:

fΞ(ξ1, ξ2) = fU (u1, u2) | detJU , Ξ| (A.32)
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where JU , Ξ is the Jacobian of the mapping U 7→ Ξ from [0, 1] × [0, 1] 7→ R
2. From (A.30) this

mapping reads:
U1 = exp

[

−(ξ2
1 + ξ2

2)/2
]

U2 =
1

2π
arctan ξ1/ξ2

(A.33)

Thus:

JU , Ξ =





−ξ1 U1 ξ2 U1

1

2π

1/ξ2

1 + (ξ1/ξ2)2
1

2π

−ξ1/ξ2
2

1 + (ξ1/ξ2)2



 (A.34)

from which one gets:

fΞ(ξ1, ξ2) = exp
[

−(ξ2
1 + ξ2

2)/2
]

/2 π (A.35)

thus the lemma. ⋄

This result allows one to generate a standard normal sample set without using the inverse standard

normal CDF (which has indeed no closed-form expression):

ξ(2i−1) =
√

−2 log u(2i−1) sin
(

2πu(2i)
)

ξ(2i) =
√

−2 log u(2i−1) cos
(

2πu(2i)
)

i = 1, . . . , [n/2] + 1 (A.36)

It is then straightforward to simulate Gaussian variates X ∼ N (µ, σ) by a linear transform X = µ+ σ ξ:

x(i) = µ+ σ ξ(i) i = 1, . . . , n (A.37)

Similarly, a lognormal random variable X ∼ LN (λ, ζ) can be obtained by X = exp (λ+ ζ ξ). Thus the

lognormally-distributed sample:

x(i) = exp
(

λ+ ζ ξ(i)
)

i = 1, . . . , n (A.38)

When a random vector X with independent components is to be simulated, the above methods can be

applied component by component. When the complete joint PDF fX(x) is prescribed, specific methods

have to be used.

Approximate transformations such as the Nataf transform may be used in order to approximate X as a

function of a standard normal vector Ξ. The latter is then simulated and the transform is applied to the

standard normal sample set.

3 Nataf transform

The Nataf transform (Nataf, 1962) has been introduced in the field of structural engineering by Der

Kiureghian and Liu (1986). It allows to build a multidimensional PDF that fits some prescribed marginal

distributions and some correlation matrix.

Suppose a random vector X has prescribed marginal distributions, say FXi
(xi), i = 1, . . . ,M and

correlation matrix R. It is possible to transform the components of X into standard normal random

variables ξi, i = 1, . . . ,M :

ξi = Φ−1(FXi
(xi)) (A.39)

The Nataf transform assumes that Ξ = {ξ1, . . . , ξM}T is a standard normal correlated random vector

whose joint PDF reads:

fΞ(ξ) = ϕM (ξ; R̃) (A.40)

where ϕM (ξ; R̃) is the multidimensional normal PDF:

ϕM (ξ; R̃) = (2π)−M/2 exp

[

−1

2
ξT · R̃−1 · ξ

]

(A.41)
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and R̃ is a pseudo-correlation matrix that should be compatible with the prescribed correlation matrix

R. From the above equations, one can write:

fX(x) = fΞ(ξ)|detJΞ, X | (A.42)

where the Jacobian of the transform is a diagonal matrix:

JΞ, X = diag

(

fX1
(x1)

ϕ(ξ1)
, . . . ,

fXM
(xM )

ϕ(ξM )

)

(A.43)

This leads to the Nataf transform (1962):

fX(x) =
fX1

(x1) . . . fXM
(xM )

ϕ(ξ1) . . . ϕ(ξM )
ϕM (ξ, R̃) (A.44)

The pseudo-correlation matrix R̃ is computed term by term by solving the following consistency equation

for R̃ij :

Rij =

∫

R2

(

xi − µXi

σXi

) (

xj − µXj

σXj

)

ϕ2(ξi, ξj , R̃ij) dξi dξj (A.45)

Due to the burden of such a computation in the general case, values of R̃ij/Rij have been tabulated

for various couples of distributions (fXi
(xi), fXj

(xj)) in Der Kiureghian and Liu (1986); Liu and Der

Kiureghian (1986), see also Melchers (1999, Appendix B).

It is important to mention that the above equations do not always have a solution, depending on the input

marginal distributions. Moreover, the obtained pseudo-correlation matrix R̃ may not be a correlation

matrix in the sense that it may not be positive definite.

It is interesting to note that the introduction of the copula theory briefly mentioned in Chapter 4 should

be of great help in this matter. Indeed, assuming a Nataf distribution for a random vector with prescribed

margins is equivalent to considering a Gaussian copula.





Appendix B

Orthogonal polynomials and

quadrature schemes

1 Orthogonal polynomials

1.1 Definition

Let us consider a weight function w : B ⊂ R 7−→ R such that w(x) ≥ 0 ∀x ∈ B and
∫

B w(x) dx = 1.

Let us consider the space of square integrable functions with respect to this weight function. This is a

Hilbert space denoted by H when equipped with the following inner product:

< f , g >H≡
∫

B
f(x) g(x)w(x) dx (B.1)

A set of orthogonal polynomials with respect to w may be obtained by a Gram-Schmidt orthogonalization

of the monomials {xk, k ∈ N}. This leads to the following recurrence relationship:

P−1(x) ≡ P0(x) = 1

Pk+1(x) = (x− ak)Pk(x)− bk Pk−1(x) ∀ k ∈ N
∗ (B.2)

where the coefficients (ak, bk) read:

ak =
< xPk , Pk >H
< Pk , Pk >H

(B.3)

bk =
< Pk , Pk >H

< Pk−1 , Pk−1 >H
(B.4)

1.2 Classical orthogonal polynomials

The well-known families of orthogonal polynomials that correspond to classical probability density func-

tions are reported in Table B.1 (Abramowitz and Stegun, 1970). The associated orthonormal Hilbertian

basis of H denoted by {ψk(x) = Pk(x)/
√
< Pk , Pk >H , k ∈ N} is also given.

Links between the various families and the so-called hypergeometric functions have been shown in Askey

and Wilson (1985), see also Xiu and Karniadakis (2002) for their use in stochastic finite element analysis.

The properties of the Legendre and Hermite polynomials that have been more specifically used in this

thesis are then reviewed for the sake of completeness.
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Table B.1: Orthogonal polynomials associated with classical probability density functions

Type of variable Weight functions Orthogonal polynomials Hilbertian basis ψk(x)

Uniform 1]−1,1[(x)/2 Legendre Pk(x) Pk(x)/
√

1
2k+1

Gaussian 1√
2π
e−x2/2 Hermite Hek

(x) Hek
(x)/
√
k!

Gamma xa e−x 1R+(x) Laguerre La
k(x) La

k(x)/
√

Γ(k+a+1)
k!

Beta 1]−1,1[(x)
(1−x)a(1+x)b

B(a) B(b) Jacobi Ja,b
k (x) Ja,b

k (x)/Ja,b,k

J2
a,b,k = 2a+b+1

2k+a+b+1
Γ(k+a+1)Γ(k+b+1)
Γ(k+a+b+1)Γ(k+1)

1.3 Hermite polynomials

The Hermite polynomials Hen(x) are solution of the following differential equation:

y′′ − x y′ + n y = 0 , n ∈ N (B.5)

They may be generated in practice by the following recurrence relationship:

He−1(x) ≡ He0(x) = 1 (B.6)

Hen+1(x) = xHen(x)− nHen−1(x) , n ∈ N (B.7)

They are orthogonal with respect to the Gaussian probability measure:
∫ ∞

−∞
Hem(x)Hen(x)ϕ(x) dx = n! δmn (B.8)

where δmn is the Kronecker symbol: δmn = 1 if m = n and 0 otherwise. If ξ is a standard normal random

variable, the following relationship holds:

E [Hem(ξ)Hen(ξ)] = n! δmn (B.9)

The first three Hermite polynomials are:

He1(x) = x He2(x) = x2 − 1 He3(x) = x3 − 3x (B.10)

1.4 Legendre polynomials

The Legendre polynomials Pn(x) are solution of the following differential equation:

(1− x2) y′′ − 2x y′ + n(n+ 1) y = 0 , n ∈ N (B.11)

They may be generated in practice by the following recurrence relationship:

P−1(x) ≡ P0(x) = 1 (B.12)

(n+ 1)Pn+1(x) = (2n+ 1)xPn(x)− nPn−1(x) , n ∈ N (B.13)

They are orthogonal with respect to the uniform probability measure over [−1, 1]:

∫ 1

−1

Pm(x)Pn(x) dx =
2

2n+ 1
δmn (B.14)

If U is a random variable with uniform PDF over [−1, 1], the following relationship holds:

E [Pm(U)Pn(U)] =
1

2n+ 1
δmn (B.15)

The first three Legendre polynomials are:

P1(x) = x P2(x) =
1

2
(3x2 − 1) P3(x) =

1

2
(5x3 − 3x) (B.16)
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2 Gaussian quadrature rules

Let us consider the following one-dimensional integral :

I =

∫

B
f(x)w(x) dx (B.17)

A quadrature rule consists in approximating I by a weighted sum of evaluations of the integrand:

I ≈ QK(f) ≡
K
∑

k=1

wk f(xk) (B.18)

In this equation, K is the order of the quadrature rule and {wk, k = 1, . . . ,K} (resp. {xk, k = 1, . . . ,K})
are the integration weights (resp. points).

The so-called Gaussian quadrature scheme ensures the optimal accuracy for the integration of polynomial

functions. Precisely, the integration weights and points are selected so that the K-th order quadrature

rule exactly integrates the polynomials up to order 2K − 1. It can be proven that the corresponding

integration points are the roots of polynomial PK . The associated weights read:

wk =
< PK−1 , PK−1 >H
P ′

K(xk)PK−1(xk)
(B.19)

The Gaussian quadrature schemes are the most efficient in terms of degree of exactness for polynomial

integration. However, it is worth emphasizing that the integration points are completely different when

moving from aK-th order to a (K+1)-th order scheme. This means that evaluations of f used to compute

QK(f) cannot be used to compute QK+1(f). This may be a drawback when adaptive integration schemes

are considered. Note that nested schemes, for which the set of points used in QK+1 contains the set of

points use in QK exist, e.g. the Clenshaw-Curtis scheme (Clenshaw and Curtis, 1960).
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une approche de modèle multiphasique. In Proc. 15th Int. Congress Soil Mech. Geotech. Eng.

(ICSMGE), Istanbul, Turkey.

7. Sudret, B., Dron, S. and Pendola, M. (2002). Time-variant reliability analysis of cooling towers

including corrosion of steel in reinforced concrete. In Proc. λµ13 – ESREL’2002 Safety and

Reliability Conf., Lyon, France, pp. 571–575.



4. List of publications 201

8. Andrieu, C., Lemaire, M. and Sudret, B. (2002). The PHI2 method: a way to assess time-variant

reliability using classical reliability tools. In Proc. λµ13 – ESREL’2002 Safety and Reliability

Conf., Lyon, France, pp. 472–475.

9. Sudret, B. and Pendola, M. (2002). Reliability analysis of cooling towers: influence of rebars

corrosion on failure. In Proc. 10th Int. Conf. on Nucl. Eng. (ICONE10), Washington, USA, pp.

571–575. Paper #22136.

10. Sudret, B., Defaux, G., Andrieu, C. and Lemaire, M. (2002). Comparison of methods for computing

the probability of failure in time-variant reliability using the outcrossing approach. In P. Spanos

and G. Deodatis (Eds.), Proc. 4th Int. Conf. on Comput. Stoch. Mech (CSM4), Corfu, Greece.

11. Sudret, B. (2002). Comparison of the spectral stochastic finite element method with the perturba-

tion method for second moment analysis. In Proc. 1st Int. ASRANet Colloquium, Glasgow, United

Kingdom.

12. Sudret, B., Berveiller, M. and Heinfling, G. (2003). Reliability of the repairing of double wall

containment vessels in the context of leak tightness assessment. In Trans. 17th Int. Conf. on

Struct. Mech. in Reactor Tech. (SMiRT 17), Prague, Czech Republic. Paper M-264.
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12. Sudret, B. (2005). Des éléments finis stochastiques spectraux aux surfaces de réponses stochas-

tiques : une approche unifiée. In Proc. 17e Congrès Français de Mécanique (CFM17), Troyes.

Paper #864.

13. Gaignaire, R., Moreau, O., Sudret, B. and Clénet, S. (2006). Propagation d’incertitudes en
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dépendant du temps. Ph. D. thesis, Université Blaise Pascal, Clermont-Ferrand, France.

Andrieu-Renaud, C., B. Sudret, and M. Lemaire (2004). The PHI2 method: a way to compute time-

variant reliability. Reliab. Eng. Sys. Safety 84, 75–86.

Archer, G., A. Saltelli, and I. Sobol’ (1997). Sensitivity measures, ANOVA-like techniques and the use

of bootstrap. J. Stat. Comput. Simul. 58, 99–120.
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Rackwitz, R. (2004). Zuverlässigkeit und Lasten im konstruktiven Ingenieurbau. Lecture notes, Technical

University of Munich.

Rackwitz, R. and B. Fiessler (1978). Structural reliability under combined load sequences. Computers &

Structures 9, 489–494.

Rafiq, M., M. Chryssanthopoulos, and T. Onoufriou (2004). Performance updating of concrete bridges

using proactive health monitoring methods. Reliab. Eng. Sys. Safety 86 (3), 247–256.

Raftery, A. and S. Lewis (1992). The number of iterations, convergence diagnostics, and generic Metropo-

lis algorithms. Technical report, Dpt. of Statistics, University of Washington, Seattle.

Rajansankar, J., N. Iyer, and T. Appa Rao (2003). Structural integrity assessment of offshore tubular

joints based on reliability analysis. Int. J. Fat. 25 (7), 609–619.

Ratier, L., S. Cambier, and L. Berthe (2005). Analyse probabiliste du désaccordement d’une roue de

turbine. In Proc. 7e Colloque National en Calcul des Structures, Giens.

RCP Consult (1998). COMREL user’s manual. RCP Consult.

Reagan, M., H. Njam, R. Ghanem, and O. Knio (2003). Uncertainty quantification in reacting-flow

simulations through non-intrusive spectral projection. Combustion and Flame 132, 545–555.

Rice, S. (1944). Mathematical analysis of random noise. Bell System Tech. J. 23, 282–332.



220 Bibliography

Rice, S. (1945). Mathematical analysis of random noise. Bell System Tech. J. 25, 46–156.

Robert, C. (1992). L’analyse statistique bayésienne. Economica.

Roberts, J. and P. Spanos (1990). Random Vibration and Statistical Linearization. Dover publications.

Rosenblatt, M. (1952). Remarks on a multivariate transformation. Ann. Math. Stat. 23, 470–472.

Rosinski, S. (2001). Evaluation of fatigue data including reactor water environmental effects – Materials

reliability project (MRP-54). Technical Report 1003079, EPRI.

Rubinstein, R.-Y. (1981). Simulation and the Monte Carlo methods. John Wiley & Sons.

Sachdeva, S., P. Nair, and A. Keane (2006). Comparative study of projection schemes for stochastic finite

element analysis. Comput. Methods Appl. Mech. Engrg. 195 (19-22), 2371–2392.

Sacks, J., W. Welch, T. Mitchell, and H. Wynn (1989). Design and analysis of computer experiments.

Stat. Sci. 4, 409–435.

Saltelli, A. (2002). Making best use of model evaluations to compute sensitivity indices. Comput. Phys.

Comm. 145, 280–297.

Saltelli, A. and R. Bolado (1998). An alternative way to compute Fourier amplitude sensitivity test

(FAST). Comput. Stat. Data Anal. 26, 445–460.

Saltelli, A., K. Chan, and E. Scott (Eds.) (2000). Sensitivity analysis. J. Wiley & Sons.

Saltelli, A. and I. Sobol’ (1995). About the use of rank transformation in sensitivity of model output.

Reliab. Eng. Sys. Safety 50, 225–239.

Saltelli, A., S. Tarantola, and K. Chan (1999). A quantitative, model independent method for global

sensitivity analysis of model output. Technometrics 41 (1), 39–56.

Saporta, G. (2006). Probabilités, analyse des données et statistique (2nd ed.). Editions Technip.

Schall, G., M. Faber, and R. Rackwitz (1991). The ergodicity assumption for sea states in the reliability

assessment of offshore structures. J. Offshore Mech. Arctic Eng., ASME 113 (3), 241–246.

Schölkopf, B. and A. Smola (2002). Learning with kernels. MIT Press.
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Schuëller, G.I. (Editor) (2006). General-purpose softwares for structural reliability analysis. Structural

Safety 28 (1-2).

Schwob, C. (2007). Approche non locale probabiliste pour l’analyse en fatigue des zones à gradient de

contrainte. Ph. D. thesis, Ecole des Mines d’Albi Carmaux.

Shafer, G. (1976). A mathematical theory of evidence. Princeton University Press.

Shen, C., P. Wirsching, and G. Cashman (1996). Design curve to characterize fatigue strength. J. Eng.

Mat. Tech., Trans. ASME (118), 514–535.

Shinozuka, M. (1964). Probability of failure under random loading. J. Eng. Mech. 90 (5), 147–170.

Shinozuka, M. (1983). Basic analysis of structural safety. J. Struct. Eng. 109 (3), 721–740.



Bibliography 221
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aleatoric, see uncertainty, aleatoric

autocorrelation coefficient function, 18, 117

exponential, 18

Gaussian, 19

sinc, 19

autocorrelation function, 117

autocovariance function, 18, 117

average method, see random field

Bayes

theorem, 11, 17, 93

Bayesian updating

application example, 104

input parameters, 92

model response, 89

probability of failure, 90

coefficient of variation, 12

collocation, see non intrusive methods, regression

concrete carbonation, 148

CONDOR algorithm, 98

confidence interval

response, 91

updated response, 91

cooling towers, 166

copula

density, 50

function, 50

correlation

coefficient, 13

matrix, 14

covariance, 12

matrix, 14

cumulative distribution function, 11

design point, see FORM

directional simulation, 40

distribution

Beta, 185

Gamma, 184

joint, 13

lognormal, 183

marginal, 13

normal, 183

posterior, 17

predictive, 17

prior, 17

uniform, 184

Weibull, 185

elliptic boundary value problem

deterministic, 55

stochastic, 56

entropy

principle of maximum, 15

EOLE, see random field

epistemic, see uncertainty, epistemic

event, 9

mutually exclusive, 10

independent, 11

expectation, 12

experimental design, 63

random, 65

roots of orthogonal polynomials, 65

expert judgment, 14

extent of damage, see space-variant reliability

fatigue, 155

application example, 162

deterministic assessment, 156

endurance limit, 159

ESOPE method, 159

Miner’s rule, 157

probabilistic S–N curves, 158

random damage, 160

fatigue crack growth, 104

first passage time, 124

FORM, 36

algorithms, 37

Bayesian inverse, 92

design point, 37

inverse, 91

Galerkin method

deterministic, 55

stochastic, 56

Hilbert space, 13, 49

Hilbertian basis, 49
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importance

factors, see measures

measures

FORM, 42

perturbation, 42

sampling, 38

inner product, 13

intrusive method, see Galerkin method, stochastic

isoprobabilistic transform, 36, 188

Karhunen-Loève expansion, 20

kernel density approximation, 67, 97, 99

kurtosis, 12

Latin Hypercube Sampling, 60

likelihood function, 93

limit state

function, 35

surface, 35

low discrepancy sequences, 61

maximum likelihood estimation, 16, 98, 100

MCMC, see Monte Carlo simulation, Markov chain

measurement uncertainty, 87

Metropolis-Hastings algorithm, 94

cascade, 95

midpoint method, see random field

model, 1

calibration, 87

error, 88

mathematical, 3

moments

method of, 16

statistical, 12, 68

Monte Carlo simulation

coefficient of variation, 36

confidence interval, 28

Markov chain, 94

moments, 28

non intrusive methods, 60

principle, 186

probability of failure, 35

Sobol’ indices, 44

Nataf transform, 36, 188

non intrusive methods, 59

projection, 60

quadrature, 62

simulation, 60

regression, 63

non parametric

approach, 5

statistics, 16

orthogonal polynomials, 51, 191

Hermite, 192

Legendre, 192

orthogonal series expansion, see random field

outcrossing rate, 127

Belayev’s formula, 131

PHI2, 136, 137

Rice’s formula, 129

perturbation method, 29

finite element model, 31

mean value, 29

random field, 32

variance, 30

PHI2 method, see time-variant reliability

polynomial chaos

expansion, 51

finite dimensional, 53

generalized, 52

probability

conditional, 11

density function, 11

joint, 13

response, 67

measure, 10

rule of total, 11

space, 10

probability of failure, 35

cumulative, 124

bounds, 127

point-in-time, 124

space-variant, 144

quadrature

1D scheme, 32, 193

moments, 32

Smolyak, 63

sparse, see Smolyak

tensorized scheme, 33, 62

quasi-random numbers, 61

random field, 18

discretization, 19

average method, 20

midpoint method, 20

OLE/EOLE, 22

orthogonal series expansion, 21

shape function method, 20

weighted integral method, 34

Gaussian, 18

non Gaussian, 25

random number generator, 186
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random process, 116

differentiable, 118

ergodic, 120

Gaussian, 122

Poisson, 121

rectangular wave renewal, 122

stationary, 117

random variable, 11

Gaussian, 13

random vector, 13

Gaussian, 14

standard normal, 14

regression, see non intrusive methods

reliability analysis, 5, 35, 68

space-variant, 143

time-variant, 123

scale of fluctuation, 19

second moment methods, 5, 28

sensitivity analysis, 2, 6, 41

shape function method, see random field

skewness, 12
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decomposition, 42

indices, 44

polynomial chaos-based, 68

sequence, 61

SORM, 38

space-variant reliability, 143

cooling towers, 171

extent of damage, 145

application example, 148

moments, 146

spectral methods, 5, 48

reliability, 68

response PDF, 67

Sobol’ indices, 68

statistical moments, 68

spectral stochastic finite element method, 54

SSFEM, 54

standard deviation, 12

statistical inference, 15

polynomial chaos-based, 100

stochastic identification, see stochastic inverse meth-

ods

stochastic inverse methods, 86, 96

application example, 107

parametric, 97

polynomial chaos-based, 99

structural reliability, see reliability analysis

subset simulation, 40

system

designed, 4

real, 4, 85

Taylor series expansion, 29

time-variant reliability, 123

application example, 140

asymptotic method, 132

cooling towers, 170

Laplace integration, 133

outcrossing rate, 127

PHI2 method, 135

right-boundary problems, 125

uncertainty

aleatoric, 4

epistemic, 4

measurement, 4

model, see model, error

uncertainty analysis, 2

Step A, 3

Step B, 4, 14

Step C, 5, 27

Step C’, 6, 41

uncertainty propagation, 2, 5, 27

reliability analysis, 35

second moment methods, 28
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variance, 12
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